Metabolic requirement for GOT2 in pancreatic cancer depends on environmental context
Abstract
Mitochondrial glutamate-oxaloacetate (GOT2) is part of the malate-aspartate shuttle (MAS), a mechanism by which cells transfer reducing equivalents from the cytosol to the mitochondria. GOT2 is a key component of mutant KRAS (KRAS*)-mediated rewiring of glutamine metabolism in pancreatic ductal adenocarcinoma (PDA). Here, we demonstrate that the loss of GOT2 disturbs redox homeostasis and halts proliferation of PDA cells in vitro. GOT2 knockdown (KD) in PDA cell lines in vitro induced NADH accumulation, decreased Asp and α-ketoglutarate (αKG) production, stalled glycolysis, disrupted the TCA cycle, and impaired proliferation. Oxidizing NADH through chemical or genetic means resolved the redox imbalance induced by GOT2 KD, permitting sustained proliferation. Despite a strong in vitro inhibitory phenotype, loss of GOT2 had no effect on tumor growth in xenograft PDA or autochthonous mouse models. We show that cancer-associated fibroblasts (CAFs), a major component of the pancreatic tumor microenvironment (TME), release the redox active metabolite pyruvate, and culturing GOT2 KD cells in CAF conditioned media (CM) rescued proliferation in vitro. Furthermore, blocking pyruvate import or pyruvate-to-lactate reduction prevented rescue of GOT2 KD in vitro by exogenous pyruvate or CAF CM. However, these interventions failed to sensitize xenografts to GOT2 KD in vivo, demonstrating the remarkable plasticity and differential metabolism deployed by PDA cells in vitro and in vivo. This emphasizes how the environmental context of distinct pre-clinical models impacts both cell-intrinsic metabolic rewiring and metabolic crosstalk with the tumor microenvironment (TME).
Data availability
All data generated or analyzed during this study are included in the manuscript and supporting Source Data file; raw data are provided for metabolomics experiments, separated by tabs, in Supplemental Table 1.
Article and author information
Author details
Funding
National Institute of Allergy and Infectious Diseases (T32AI007413)
- Samuel Kerk
National Cancer Institute (R37CA237421)
- Costas A Lyssiotis
National Cancer Institute (R01CA248160)
- Costas A Lyssiotis
National Cancer Institute (R01CA244931)
- Costas A Lyssiotis
National Cancer Institute (F31CA254079)
- Jennifer A Jiménez
National Institute of Diabetes and Digestive and Kidney Diseases (T32-DK094775)
- Barbara S Nelson
National Cancer Institute (T32-CA009676)
- Barbara S Nelson
National Cancer Institute (R50 CA232985)
- Yaqing Zhang
National Institute of General Medical Sciences (T32-GM11390)
- Samantha B Kemp
National Cancer Institute (F31-CA247076)
- Samantha B Kemp
National Cancer Institute (T32-CA009676)
- Nina G Steele
National Cancer Institute (F31CA24745701)
- Samuel Kerk
American Cancer Society (PF-19-096-01)
- Nina G Steele
National Cancer Institute (K99CA241357)
- Christopher J Halbrook
National Institute of Diabetes and Digestive and Kidney Diseases (P30DK034933)
- Christopher J Halbrook
National Institute of General Medical Sciences (R01GM101171)
- David B Lombard
National Cancer Institute (CA253986)
- David B Lombard
National Cancer Center (P30 CA046592)
- Costas A Lyssiotis
National Cancer Institute (1F99CA264414-01)
- Samuel Kerk
National Cancer Institute (CA148828)
- Yatrik M Shah
National Cancer Institute (CA245546)
- Yatrik M Shah
Pancreatic Cancer Action Network (13-70-25-LYSS)
- Costas A Lyssiotis
V Foundation for Cancer Research (V2016-009)
- Costas A Lyssiotis
Sidney Kimmel Foundation (SKF-16-005)
- Costas A Lyssiotis
American Association for Cancer Research (17-20-01-LYSS)
- Costas A Lyssiotis
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: Animal experiments were conducted in accordance with the Office of Laboratory Animal Welfare and approved by the Institutional Animal Care and Use Committees of the University of Michigan. ULAM: PRO00008877
Copyright
© 2022, Kerk et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,459
- views
-
- 846
- downloads
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Biochemistry and Chemical Biology
- Structural Biology and Molecular Biophysics
African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.
-
- Biochemistry and Chemical Biology
N 6,2’-O-dimethyladenosine (m6Am) is a modified nucleotide located at the first transcribed position in mRNA and snRNA that is essential for diverse physiological processes. m6Am mapping methods assume each gene uses a single start nucleotide. However, gene transcription usually involves multiple start sites, generating numerous 5’ isoforms. Thus, gene-level annotations cannot capture the diversity of m6Am modification in the transcriptome. Here, we describe CROWN-seq, which simultaneously identifies transcription-start nucleotides and quantifies m6Am stoichiometry for each 5’ isoform that initiates with adenosine. Using CROWN-seq, we map the m6Am landscape in nine human cell lines. Our findings reveal that m6Am is nearly always a high stoichiometry modification, with only a small subset of cellular mRNAs showing lower m6Am stoichiometry. We find that m6Am is associated with increased transcript expression and provide evidence that m6Am may be linked to transcription initiation associated with specific promoter sequences and initiation mechanisms. These data suggest a potential new function for m6Am in influencing transcription.