TIGAR deficiency enhances skeletal muscle thermogenesis by increasing neuromuscular junction cholinergic signaling

  1. Yan Tang
  2. Haihong Zong
  3. Hyokjoon Kwon
  4. Yunping Qiu
  5. Jacob B Pessin
  6. Licheng Wu
  7. Katherine A Buddo
  8. Ilya Boykov
  9. Cameron A Schmidt
  10. Chien-Te Lin
  11. P Darrell Neufer
  12. Gary J Schwartz
  13. Irwin J Kurland
  14. Jeffrey Pessin  Is a corresponding author
  1. Albert Einstein College of Medicine, United States
  2. East Carolina University, United States

Abstract

Cholinergic and sympathetic counter-regulatory networks control numerous physiologic functions including learning/memory/cognition, stress responsiveness, blood pressure, heart rate and energy balance. As neurons primarily utilize glucose as their primary metabolic energy source, we generated mice with increased glycolysis in cholinergic neurons by specific deletion of the fructose-2,6-phosphatase protein TIGAR. Steady-state and stable isotope flux analyses demonstrated increased rates of glycolysis, acetyl-CoA production, acetylcholine levels and density of neuromuscular synaptic junction clusters with enhanced acetylcholine release. The increase in cholinergic signaling reduced blood pressure and heart rate with a remarkable resistance to cold-induced hypothermia. These data directly demonstrate that increased cholinergic signaling through the modulation of glycolysis has several metabolic benefits particularly to increase energy expenditure and heat production upon cold exposure.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1, 3, 4, 5, 7, Figure 1-figure supplement 1, 3, and 6.

Article and author information

Author details

  1. Yan Tang

    Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1377-422X
  2. Haihong Zong

    Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Hyokjoon Kwon

    Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yunping Qiu

    Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jacob B Pessin

    Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Licheng Wu

    Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Katherine A Buddo

    Department of Physiology, East Carolina University, Greenville, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Ilya Boykov

    Department of Physiology, East Carolina University, Greenville, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Cameron A Schmidt

    Department of Physiology, East Carolina University, Greenville, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Chien-Te Lin

    Department of Physiology, East Carolina University, Greenville, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. P Darrell Neufer

    Department of Physiology, East Carolina University, Greenville, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Gary J Schwartz

    Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Irwin J Kurland

    Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Jeffrey Pessin

    Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
    For correspondence
    jeffrey.pessin@einstein.yu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2041-2726

Funding

National Institutes of Health (DK033823)

  • Jeffrey Pessin

National Institutes of Health (DK020541)

  • Jeffrey Pessin

S10 SIG Award for the Sciex 6500+QTRAP (1S10OD021798)

  • Irwin J Kurland

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All studies were performed in accordance with protocols approved by the Einstein Institutional Animal Care and Use Committee. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (0000-1041, 0000-1061, and 0000-1389) of the Albert Einstein College of Medicine.

Copyright

© 2022, Tang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

Share this article

https://doi.org/10.7554/eLife.73360

Further reading

    1. Cell Biology
    Yan Song, Linda J Fothergill ... Gene W Yeo
    Research Article

    Dynamic interactions between gut mucosal cells and the external environment are essential to maintain gut homeostasis. Enterochromaffin (EC) cells transduce both chemical and mechanical signals and produce 5-hydroxytryptamine to mediate disparate physiological responses. However, the molecular and cellular basis for functional diversity of ECs remains to be adequately defined. Here, we integrated single-cell transcriptomics with spatial image analysis to identify 14 EC clusters that are topographically organized along the gut. Subtypes predicted to be sensitive to the chemical environment and mechanical forces were identified that express distinct transcription factors and hormones. A Piezo2+ population in the distal colon was endowed with a distinctive neuronal signature. Using a combination of genetic, chemogenetic, and pharmacological approaches, we demonstrated Piezo2+ ECs are required for normal colon motility. Our study constructs a molecular map for ECs and offers a framework for deconvoluting EC cells with pleiotropic functions.

    1. Cell Biology
    2. Developmental Biology
    Sarah Y Coomson, Salil A Lachke
    Insight

    A study in mice reveals key interactions between proteins involved in fibroblast growth factor signaling and how they contribute to distinct stages of eye lens development.