Intergenerational adaptations to stress are evolutionarily conserved, stress-specific, and have deleterious trade-offs

  1. Nicholas O Burton  Is a corresponding author
  2. Alexandra Willis
  3. Kinsey Fisher
  4. Fabian Braukmann
  5. Jonathan Price
  6. Lewis Stevens
  7. L Ryan Baugh
  8. Aaron W Reinke
  9. Eric A Miska
  1. University of Cambridge, United Kingdom
  2. University of Toronto, Canada
  3. Duke University, United States
  4. Northwestern University, United States

Abstract

Despite reports of parental exposure to stress promoting physiological adaptations in progeny in diverse organisms, there remains considerable debate over the significance and evolutionary conservation of such multigenerational effects. Here, we investigate four independent models of intergenerational adaptations to stress in C. elegans - bacterial infection, eukaryotic infection, osmotic stress and nutrient stress - across multiple species. We found that all four intergenerational physiological adaptations are conserved in at least one other species, that they are stress-specific, and that they have deleterious trade-offs in mismatched environments. By profiling the effects of parental bacterial infection and osmotic stress exposure on progeny gene expression across species we established a core set of 587 genes that exhibited a greater than 2-fold intergenerational change in expression in response to stress in C. elegans and at least one other species, as well as a set of 37 highly conserved genes that exhibited a greater than 2-fold intergenerational change in expression in all four species tested. Furthermore, we provide evidence suggesting that presumed adaptive and deleterious intergenerational effects are molecularly related at the gene expression level. Lastly, we found that none of the effects we detected of these stresses on C. elegans F1 progeny gene expression persisted transgenerationally three generations after stress exposure. We conclude that intergenerational responses to stress play a substantial and evolutionarily conserved role in regulating animal physiology and that the vast majority of the effects of parental stress on progeny gene expression are reversible and not maintained transgenerationally.

Data availability

RNA-seq data that support the findings of this study have been deposited at NCBI GEO and are available under the accession code GSE173987.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Nicholas O Burton

    Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    nob20@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5495-3988
  2. Alexandra Willis

    University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Kinsey Fisher

    Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Fabian Braukmann

    Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Jonathan Price

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6554-5667
  6. Lewis Stevens

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6075-8273
  7. L Ryan Baugh

    Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2148-5492
  8. Aaron W Reinke

    University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7612-5342
  9. Eric A Miska

    The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4450-576X

Funding

Centre Trophoblast Research (Next Generation fellowship)

  • Nicholas O Burton

National Institutes of Health

  • Kinsey Fisher
  • L Ryan Baugh

National Institutes of Health (GM117408)

  • L Ryan Baugh

Natural Sciences and Engineering Research Council of Canada (Grant #522691522691)

  • Alexandra Willis
  • Aaron W Reinke

Alfred P Sloan Research Fellowship (FG2019-12040)

  • Aaron W Reinke

Cancer Research UK (C13474/A18583)

  • Eric A Miska

Cancer Research UK (C6946/A14492)

  • Eric A Miska

Wellcome Trust (104640/Z/14/Z)

  • Eric A Miska

Wellcome Trust (092096/Z/10/Z)

  • Eric A Miska

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Diethard Tautz, Max-Planck Institute for Evolutionary Biology, Germany

Version history

  1. Preprint posted: May 8, 2021 (view preprint)
  2. Received: August 27, 2021
  3. Accepted: September 27, 2021
  4. Accepted Manuscript published: October 8, 2021 (version 1)
  5. Version of Record published: November 5, 2021 (version 2)

Copyright

© 2021, Burton et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,278
    Page views
  • 333
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicholas O Burton
  2. Alexandra Willis
  3. Kinsey Fisher
  4. Fabian Braukmann
  5. Jonathan Price
  6. Lewis Stevens
  7. L Ryan Baugh
  8. Aaron W Reinke
  9. Eric A Miska
(2021)
Intergenerational adaptations to stress are evolutionarily conserved, stress-specific, and have deleterious trade-offs
eLife 10:e73425.
https://doi.org/10.7554/eLife.73425

Share this article

https://doi.org/10.7554/eLife.73425

Further reading

    1. Cell Biology
    2. Evolutionary Biology
    Jonathan E Phillips, Duojia Pan
    Research Advance

    The genomes of close unicellular relatives of animals encode orthologs of many genes that regulate animal development. However, little is known about the function of such genes in unicellular organisms or the evolutionary process by which these genes came to function in multicellular development. The Hippo pathway, which regulates cell proliferation and tissue size in animals, is present in some of the closest unicellular relatives of animals, including the amoeboid organism Capsaspora owczarzaki. We previously showed that the Capsaspora ortholog of the Hippo pathway nuclear effector Yorkie/YAP/TAZ (coYki) regulates actin dynamics and the three-dimensional morphology of Capsaspora cell aggregates, but is dispensable for cell proliferation control (Phillips et al., 2022). However, the function of upstream Hippo pathway components, and whether and how they regulate coYki in Capsaspora, remained unknown. Here, we analyze the function of the upstream Hippo pathway kinases coHpo and coWts in Capsaspora by generating mutant lines for each gene. Loss of either kinase results in increased nuclear localization of coYki, indicating an ancient, premetazoan origin of this Hippo pathway regulatory mechanism. Strikingly, we find that loss of either kinase causes a contractile cell behavior and increased density of cell packing within Capsaspora aggregates. We further show that this increased cell density is not due to differences in proliferation, but rather actomyosin-dependent changes in the multicellular architecture of aggregates. Given its well-established role in cell density-regulated proliferation in animals, the increased density of cell packing in coHpo and coWts mutants suggests a shared and possibly ancient and conserved function of the Hippo pathway in cell density control. Together, these results implicate cytoskeletal regulation but not proliferation as an ancestral function of the Hippo pathway kinase cascade and uncover a novel role for Hippo signaling in regulating cell density in a proliferation-independent manner.

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Zachary Paul Billman, Stephen Bela Kovacs ... Edward A Miao
    Research Article

    Gasdermins oligomerize to form pores in the cell membrane, causing regulated lytic cell death called pyroptosis. Mammals encode five gasdermins that can trigger pyroptosis: GSDMA, B, C, D, and E. Caspase and granzyme proteases cleave the linker regions of and activate GSDMB, C, D, and E, but no endogenous activation pathways are yet known for GSDMA. Here, we perform a comprehensive evolutionary analysis of the gasdermin family. A gene duplication of GSDMA in the common ancestor of caecilian amphibians, reptiles, and birds gave rise to GSDMA–D in mammals. Uniquely in our tree, amphibian, reptile, and bird GSDMA group in a separate clade than mammal GSDMA. Remarkably, GSDMA in numerous bird species contain caspase-1 cleavage sites like YVAD or FASD in the linker. We show that GSDMA from birds, amphibians, and reptiles are all cleaved by caspase-1. Thus, GSDMA was originally cleaved by the host-encoded protease caspase-1. In mammals the caspase-1 cleavage site in GSDMA is disrupted; instead, a new protein, GSDMD, is the target of caspase-1. Mammal caspase-1 uses exosite interactions with the GSDMD C-terminal domain to confer the specificity of this interaction, whereas we show that bird caspase-1 uses a stereotypical tetrapeptide sequence to confer specificity for bird GSDMA. Our results reveal an evolutionarily stable association between caspase-1 and the gasdermin family, albeit a shifting one. Caspase-1 repeatedly changes its target gasdermin over evolutionary time at speciation junctures, initially cleaving GSDME in fish, then GSDMA in amphibians/reptiles/birds, and finally GSDMD in mammals.