The mutationathon highlights the importance of reaching standardization in estimates of pedigree-based germline mutation rates

  1. Lucie A Bergeron  Is a corresponding author
  2. Søren Besenbacher
  3. Tychele Turner
  4. Cyril J Versoza
  5. Richard J Wang
  6. Alivia Lee Price
  7. Ellie Armstrong
  8. Meritxell Riera
  9. Jedidiah Carlson
  10. Hwei-yen Chen
  11. Matthew W Hahn
  12. Kelley Harris
  13. April Snøfrid Kleppe
  14. Elora H López-Nandam
  15. Priya Moorjani
  16. Susanne P Pfeifer
  17. George P Tiley
  18. Anne D Yoder
  19. Guojie Zhang
  20. Mikkel H Schierup  Is a corresponding author
  1. University of Copenhagen, Denmark
  2. Aarhus University, Denmark
  3. Washington University in St. Louis, United States
  4. Arizona State University, United States
  5. Indiana University, United States
  6. Stanford University, United States
  7. University of Washington, United States
  8. California Academy of Sciences, United States
  9. University of California, Berkeley, United States
  10. Duke University, United States

Abstract

In the past decade, several studies have estimated the human per-generation germline mutation rate using large pedigrees. More recently, estimates for various non-human species have been published. However, methodological differences among studies in detecting germline mutations and estimating mutation rates make direct comparisons difficult. Here, we describe the many different steps involved in estimating pedigree-based mutation rates, including sampling, sequencing, mapping, variant calling, filtering, and how to appropriately account for false-positive and false-negative rates. For each step, we review the different methods and parameter choices that have been used in the recent literature. Additionally, we present the results from a 'Mutationathon', a competition organized among five research labs to compare germline mutation rate estimates for a single pedigree of rhesus macaques. We report almost a two-fold variation in the final estimated rate among groups using different post-alignment processing, calling, and filtering criteria and provide details into the sources of variation across studies. Though the difference among estimates is not statistically significant, this discrepancy emphasizes the need for standardized methods in mutation rate estimations and the difficulty in comparing rates from different studies. Finally, this work aims to provide guidelines for computational and statistical benchmarks for future studies interested in identifying germline mutations from pedigrees.

Data availability

The sequences of the pedigree analyzed are available on NCBI under the accession numbers:SRR10426295;SRR10426294;SRR10426275;SRR10426264;SRR10426253;SRR10426291;SRR10426290;SRR10426256;SRR10426255.The PCR experiment and Sanger resequencing produced for this work are deposited on Genbank under the accession number MZ661796 - MZ662076. Supplementary table 4 describe the data.The scripts used by the participants of the Mutationathon are publically available on different github described in the manuscript.Figure 3, 4 and 5 can be reproduced with the data in Figure 3 - source data 1, Figure 4 - source data 1, and Figure 5 - source data 1 .

The following data sets were generated

Article and author information

Author details

  1. Lucie A Bergeron

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    For correspondence
    lucie.a.bergeron@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1877-1690
  2. Søren Besenbacher

    Department of Molecular Medicine (MOMA), Aarhus University, Aarhus N, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1455-1738
  3. Tychele Turner

    Department of Genetics, Washington University in St. Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Cyril J Versoza

    Center for Evolution and Medicine, Arizona State University, Tempe, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Richard J Wang

    Department of Biology, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alivia Lee Price

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  7. Ellie Armstrong

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7107-6318
  8. Meritxell Riera

    Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  9. Jedidiah Carlson

    Department of Genome Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Hwei-yen Chen

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  11. Matthew W Hahn

    Department of Biology, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5731-8808
  12. Kelley Harris

    Department of Genome Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0302-2523
  13. April Snøfrid Kleppe

    Department of Molecular Medicine, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7866-3056
  14. Elora H López-Nandam

    California Academy of Sciences, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Priya Moorjani

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Susanne P Pfeifer

    School of Life Sciences, Arizona State University, Tempe, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1378-2913
  17. George P Tiley

    Department of Biology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0053-0207
  18. Anne D Yoder

    Department of Biology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Guojie Zhang

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  20. Mikkel H Schierup

    Bioinformatics Research Center, Aarhus University, Aarhus, Denmark
    For correspondence
    mheide@birc.au.dk
    Competing interests
    The authors declare that no competing interests exist.

Funding

Carlsbergfondet (CF16-0663)

  • Guojie Zhang

US national science foundation CAREER (DEB-2045343)

  • Susanne P Pfeifer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Bergeron et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,502
    views
  • 393
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lucie A Bergeron
  2. Søren Besenbacher
  3. Tychele Turner
  4. Cyril J Versoza
  5. Richard J Wang
  6. Alivia Lee Price
  7. Ellie Armstrong
  8. Meritxell Riera
  9. Jedidiah Carlson
  10. Hwei-yen Chen
  11. Matthew W Hahn
  12. Kelley Harris
  13. April Snøfrid Kleppe
  14. Elora H López-Nandam
  15. Priya Moorjani
  16. Susanne P Pfeifer
  17. George P Tiley
  18. Anne D Yoder
  19. Guojie Zhang
  20. Mikkel H Schierup
(2022)
The mutationathon highlights the importance of reaching standardization in estimates of pedigree-based germline mutation rates
eLife 11:e73577.
https://doi.org/10.7554/eLife.73577

Share this article

https://doi.org/10.7554/eLife.73577

Further reading

    1. Evolutionary Biology
    Ljiljana Mihajlovic, Bharat Ravi Iyengar ... Yolanda Schaerli
    Research Article

    Gene duplication drives evolution by providing raw material for proteins with novel functions. An influential hypothesis by Ohno (1970) posits that gene duplication helps genes tolerate new mutations and thus facilitates the evolution of new phenotypes. Competing hypotheses argue that deleterious mutations will usually inactivate gene duplicates too rapidly for Ohno’s hypothesis to work. We experimentally tested Ohno’s hypothesis by evolving one or exactly two copies of a gene encoding a fluorescent protein in Escherichia coli through several rounds of mutation and selection. We analyzed the genotypic and phenotypic evolutionary dynamics of the evolving populations through high-throughput DNA sequencing, biochemical assays, and engineering of selected variants. In support of Ohno’s hypothesis, populations carrying two gene copies displayed higher mutational robustness than those carrying a single gene copy. Consequently, the double-copy populations experienced relaxed purifying selection, evolved higher phenotypic and genetic diversity, carried more mutations and accumulated combinations of key beneficial mutations earlier. However, their phenotypic evolution was not accelerated, possibly because one gene copy rapidly became inactivated by deleterious mutations. Our work provides an experimental platform to test models of evolution by gene duplication, and it supports alternatives to Ohno’s hypothesis that point to the importance of gene dosage.

    1. Evolutionary Biology
    Lucy A Winder, Mirre JP Simons, Terry Burke
    Research Article

    Life-history theory, central to our understanding of diversity in morphology, behaviour, and senescence, describes how traits evolve through the optimisation of trade-offs in investment. Despite considerable study, there is only minimal support for trade-offs within species between the two traits most closely linked to fitness – reproductive effort and survival – questioning the theory’s general validity. We used a meta-analysis to separate the effects of individual quality (positive survival/reproduction correlation) from the costs of reproduction (negative survival/reproduction correlation) using studies of reproductive effort and parental survival in birds. Experimental enlargement of brood size caused reduced parental survival. However, the effect size of brood size manipulation was small and opposite to the effect of phenotypic quality, as we found that individuals that naturally produced larger clutches also survived better. The opposite effects on parental survival in experimental and observational studies of reproductive effort provide the first meta-analytic evidence for theory suggesting that quality differences mask trade-offs. Fitness projections using the overall effect size revealed that reproduction presented negligible costs, except when reproductive effort was forced beyond the maximum level observed within species, to that seen between species. We conclude that there is little support for the most fundamental life-history trade-off, between reproductive effort and survival, operating within a population. We suggest that within species the fitness landscape of the reproduction–survival trade-off is flat until it reaches the boundaries of the between-species fast–slow life-history continuum. Our results provide a quantitative explanation as to why the costs of reproduction are not apparent and why variation in reproductive effort persists within species.