The mutationathon highlights the importance of reaching standardization in estimates of pedigree-based germline mutation rates

  1. Lucie A Bergeron  Is a corresponding author
  2. Søren Besenbacher
  3. Tychele Turner
  4. Cyril J Versoza
  5. Richard J Wang
  6. Alivia Lee Price
  7. Ellie Armstrong
  8. Meritxell Riera
  9. Jedidiah Carlson
  10. Hwei-yen Chen
  11. Matthew W Hahn
  12. Kelley Harris
  13. April Snøfrid Kleppe
  14. Elora H López-Nandam
  15. Priya Moorjani
  16. Susanne P Pfeifer
  17. George P Tiley
  18. Anne D Yoder
  19. Guojie Zhang
  20. Mikkel H Schierup  Is a corresponding author
  1. University of Copenhagen, Denmark
  2. Aarhus University, Denmark
  3. Washington University in St. Louis, United States
  4. Arizona State University, United States
  5. Indiana University, United States
  6. Stanford University, United States
  7. University of Washington, United States
  8. California Academy of Sciences, United States
  9. University of California, Berkeley, United States
  10. Duke University, United States

Abstract

In the past decade, several studies have estimated the human per-generation germline mutation rate using large pedigrees. More recently, estimates for various non-human species have been published. However, methodological differences among studies in detecting germline mutations and estimating mutation rates make direct comparisons difficult. Here, we describe the many different steps involved in estimating pedigree-based mutation rates, including sampling, sequencing, mapping, variant calling, filtering, and how to appropriately account for false-positive and false-negative rates. For each step, we review the different methods and parameter choices that have been used in the recent literature. Additionally, we present the results from a 'Mutationathon', a competition organized among five research labs to compare germline mutation rate estimates for a single pedigree of rhesus macaques. We report almost a two-fold variation in the final estimated rate among groups using different post-alignment processing, calling, and filtering criteria and provide details into the sources of variation across studies. Though the difference among estimates is not statistically significant, this discrepancy emphasizes the need for standardized methods in mutation rate estimations and the difficulty in comparing rates from different studies. Finally, this work aims to provide guidelines for computational and statistical benchmarks for future studies interested in identifying germline mutations from pedigrees.

Data availability

The sequences of the pedigree analyzed are available on NCBI under the accession numbers:SRR10426295;SRR10426294;SRR10426275;SRR10426264;SRR10426253;SRR10426291;SRR10426290;SRR10426256;SRR10426255.The PCR experiment and Sanger resequencing produced for this work are deposited on Genbank under the accession number MZ661796 - MZ662076. Supplementary table 4 describe the data.The scripts used by the participants of the Mutationathon are publically available on different github described in the manuscript.Figure 3, 4 and 5 can be reproduced with the data in Figure 3 - source data 1, Figure 4 - source data 1, and Figure 5 - source data 1 .

The following data sets were generated

Article and author information

Author details

  1. Lucie A Bergeron

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    For correspondence
    lucie.a.bergeron@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1877-1690
  2. Søren Besenbacher

    Department of Molecular Medicine (MOMA), Aarhus University, Aarhus N, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1455-1738
  3. Tychele Turner

    Department of Genetics, Washington University in St. Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Cyril J Versoza

    Center for Evolution and Medicine, Arizona State University, Tempe, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Richard J Wang

    Department of Biology, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alivia Lee Price

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  7. Ellie Armstrong

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7107-6318
  8. Meritxell Riera

    Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  9. Jedidiah Carlson

    Department of Genome Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Hwei-yen Chen

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  11. Matthew W Hahn

    Department of Biology, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5731-8808
  12. Kelley Harris

    Department of Genome Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0302-2523
  13. April Snøfrid Kleppe

    Department of Molecular Medicine, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7866-3056
  14. Elora H López-Nandam

    California Academy of Sciences, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Priya Moorjani

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Susanne P Pfeifer

    School of Life Sciences, Arizona State University, Tempe, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1378-2913
  17. George P Tiley

    Department of Biology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0053-0207
  18. Anne D Yoder

    Department of Biology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Guojie Zhang

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  20. Mikkel H Schierup

    Bioinformatics Research Center, Aarhus University, Aarhus, Denmark
    For correspondence
    mheide@birc.au.dk
    Competing interests
    The authors declare that no competing interests exist.

Funding

Carlsbergfondet (CF16-0663)

  • Guojie Zhang

US national science foundation CAREER (DEB-2045343)

  • Susanne P Pfeifer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Virginie Courtier-Orgogozo, Université Paris-Diderot CNRS, France

Version history

  1. Preprint posted: August 31, 2021 (view preprint)
  2. Received: September 2, 2021
  3. Accepted: January 11, 2022
  4. Accepted Manuscript published: January 12, 2022 (version 1)
  5. Version of Record published: February 10, 2022 (version 2)
  6. Version of Record updated: November 9, 2022 (version 3)

Copyright

© 2022, Bergeron et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,501
    Page views
  • 307
    Downloads
  • 21
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lucie A Bergeron
  2. Søren Besenbacher
  3. Tychele Turner
  4. Cyril J Versoza
  5. Richard J Wang
  6. Alivia Lee Price
  7. Ellie Armstrong
  8. Meritxell Riera
  9. Jedidiah Carlson
  10. Hwei-yen Chen
  11. Matthew W Hahn
  12. Kelley Harris
  13. April Snøfrid Kleppe
  14. Elora H López-Nandam
  15. Priya Moorjani
  16. Susanne P Pfeifer
  17. George P Tiley
  18. Anne D Yoder
  19. Guojie Zhang
  20. Mikkel H Schierup
(2022)
The mutationathon highlights the importance of reaching standardization in estimates of pedigree-based germline mutation rates
eLife 11:e73577.
https://doi.org/10.7554/eLife.73577

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Carolina A Martinez-Gutierrez, Josef C Uyeda, Frank O Aylward
    Research Article

    Microbial plankton play a central role in marine biogeochemical cycles, but the timing in which abundant lineages diversified into ocean environments remains unclear. Here, we reconstructed the timeline in which major clades of bacteria and archaea colonized the ocean using a high-resolution benchmarked phylogenetic tree that allows for simultaneous and direct comparison of the ages of multiple divergent lineages. Our findings show that the diversification of the most prevalent marine clades spans throughout a period of 2.2 Ga, with most clades colonizing the ocean during the last 800 million years. The oldest clades – SAR202, SAR324, Ca. Marinimicrobia, and Marine Group II – diversified around the time of the Great Oxidation Event, during which oxygen concentration increased but remained at microaerophilic levels throughout the Mid-Proterozoic, consistent with the prevalence of some clades within these groups in oxygen minimum zones today. We found the diversification of the prevalent heterotrophic marine clades SAR11, SAR116, SAR92, SAR86, and Roseobacter as well as the Marine Group I to occur near to the Neoproterozoic Oxygenation Event (0.8–0.4 Ga). The diversification of these clades is concomitant with an overall increase of oxygen and nutrients in the ocean at this time, as well as the diversification of eukaryotic algae, consistent with the previous hypothesis that the diversification of heterotrophic bacteria is linked to the emergence of large eukaryotic phytoplankton. The youngest clades correspond to the widespread phototrophic clades Prochlorococcus, Synechococcus, and Crocosphaera, whose diversification happened after the Phanerozoic Oxidation Event (0.45–0.4 Ga), in which oxygen concentrations had already reached their modern levels in the atmosphere and the ocean. Our work clarifies the timing at which abundant lineages of bacteria and archaea colonized the ocean, thereby providing key insights into the evolutionary history of lineages that comprise the majority of prokaryotic biomass in the modern ocean.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Zachary Baker, Molly Przeworski, Guy Sella
    Research Article Updated

    In many species, meiotic recombination events tend to occur in narrow intervals of the genome, known as hotspots. In humans and mice, double strand break (DSB) hotspot locations are determined by the DNA-binding specificity of the zinc finger array of the PRDM9 protein, which is rapidly evolving at residues in contact with DNA. Previous models explained this rapid evolution in terms of the need to restore PRDM9 binding sites lost to gene conversion over time, under the assumption that more PRDM9 binding always leads to more DSBs. This assumption, however, does not align with current evidence. Recent experimental work indicates that PRDM9 binding on both homologs facilitates DSB repair, and that the absence of sufficient symmetric binding disrupts meiosis. We therefore consider an alternative hypothesis: that rapid PRDM9 evolution is driven by the need to restore symmetric binding because of its role in coupling DSB formation and efficient repair. To this end, we model the evolution of PRDM9 from first principles: from its binding dynamics to the population genetic processes that govern the evolution of the zinc finger array and its binding sites. We show that the loss of a small number of strong binding sites leads to the use of a greater number of weaker ones, resulting in a sharp reduction in symmetric binding and favoring new PRDM9 alleles that restore the use of a smaller set of strong binding sites. This decrease, in turn, drives rapid PRDM9 evolutionary turnover. Our results therefore suggest that the advantage of new PRDM9 alleles is in limiting the number of binding sites used effectively, rather than in increasing net PRDM9 binding. By extension, our model suggests that the evolutionary advantage of hotspots may have been to increase the efficiency of DSB repair and/or homolog pairing.