The mutationathon highlights the importance of reaching standardization in estimates of pedigree-based germline mutation rates

  1. Lucie A Bergeron  Is a corresponding author
  2. Søren Besenbacher
  3. Tychele Turner
  4. Cyril J Versoza
  5. Richard J Wang
  6. Alivia Lee Price
  7. Ellie Armstrong
  8. Meritxell Riera
  9. Jedidiah Carlson
  10. Hwei-yen Chen
  11. Matthew W Hahn
  12. Kelley Harris
  13. April Snøfrid Kleppe
  14. Elora H López-Nandam
  15. Priya Moorjani
  16. Susanne P Pfeifer
  17. George P Tiley
  18. Anne D Yoder
  19. Guojie Zhang
  20. Mikkel H Schierup  Is a corresponding author
  1. University of Copenhagen, Denmark
  2. Aarhus University, Denmark
  3. Washington University in St. Louis, United States
  4. Arizona State University, United States
  5. Indiana University, United States
  6. Stanford University, United States
  7. University of Washington, United States
  8. California Academy of Sciences, United States
  9. University of California, Berkeley, United States
  10. Duke University, United States

Abstract

In the past decade, several studies have estimated the human per-generation germline mutation rate using large pedigrees. More recently, estimates for various non-human species have been published. However, methodological differences among studies in detecting germline mutations and estimating mutation rates make direct comparisons difficult. Here, we describe the many different steps involved in estimating pedigree-based mutation rates, including sampling, sequencing, mapping, variant calling, filtering, and how to appropriately account for false-positive and false-negative rates. For each step, we review the different methods and parameter choices that have been used in the recent literature. Additionally, we present the results from a 'Mutationathon', a competition organized among five research labs to compare germline mutation rate estimates for a single pedigree of rhesus macaques. We report almost a two-fold variation in the final estimated rate among groups using different post-alignment processing, calling, and filtering criteria and provide details into the sources of variation across studies. Though the difference among estimates is not statistically significant, this discrepancy emphasizes the need for standardized methods in mutation rate estimations and the difficulty in comparing rates from different studies. Finally, this work aims to provide guidelines for computational and statistical benchmarks for future studies interested in identifying germline mutations from pedigrees.

Data availability

The sequences of the pedigree analyzed are available on NCBI under the accession numbers:SRR10426295;SRR10426294;SRR10426275;SRR10426264;SRR10426253;SRR10426291;SRR10426290;SRR10426256;SRR10426255.The PCR experiment and Sanger resequencing produced for this work are deposited on Genbank under the accession number MZ661796 - MZ662076. Supplementary table 4 describe the data.The scripts used by the participants of the Mutationathon are publically available on different github described in the manuscript.Figure 3, 4 and 5 can be reproduced with the data in Figure 3 - source data 1, Figure 4 - source data 1, and Figure 5 - source data 1 .

The following data sets were generated

Article and author information

Author details

  1. Lucie A Bergeron

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    For correspondence
    lucie.a.bergeron@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1877-1690
  2. Søren Besenbacher

    Department of Molecular Medicine (MOMA), Aarhus University, Aarhus N, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1455-1738
  3. Tychele Turner

    Department of Genetics, Washington University in St. Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Cyril J Versoza

    Center for Evolution and Medicine, Arizona State University, Tempe, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Richard J Wang

    Department of Biology, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alivia Lee Price

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  7. Ellie Armstrong

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7107-6318
  8. Meritxell Riera

    Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  9. Jedidiah Carlson

    Department of Genome Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Hwei-yen Chen

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  11. Matthew W Hahn

    Department of Biology, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5731-8808
  12. Kelley Harris

    Department of Genome Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0302-2523
  13. April Snøfrid Kleppe

    Department of Molecular Medicine, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7866-3056
  14. Elora H López-Nandam

    California Academy of Sciences, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Priya Moorjani

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Susanne P Pfeifer

    School of Life Sciences, Arizona State University, Tempe, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1378-2913
  17. George P Tiley

    Department of Biology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0053-0207
  18. Anne D Yoder

    Department of Biology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Guojie Zhang

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  20. Mikkel H Schierup

    Bioinformatics Research Center, Aarhus University, Aarhus, Denmark
    For correspondence
    mheide@birc.au.dk
    Competing interests
    The authors declare that no competing interests exist.

Funding

Carlsbergfondet (CF16-0663)

  • Guojie Zhang

US national science foundation CAREER (DEB-2045343)

  • Susanne P Pfeifer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Bergeron et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,395
    views
  • 381
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lucie A Bergeron
  2. Søren Besenbacher
  3. Tychele Turner
  4. Cyril J Versoza
  5. Richard J Wang
  6. Alivia Lee Price
  7. Ellie Armstrong
  8. Meritxell Riera
  9. Jedidiah Carlson
  10. Hwei-yen Chen
  11. Matthew W Hahn
  12. Kelley Harris
  13. April Snøfrid Kleppe
  14. Elora H López-Nandam
  15. Priya Moorjani
  16. Susanne P Pfeifer
  17. George P Tiley
  18. Anne D Yoder
  19. Guojie Zhang
  20. Mikkel H Schierup
(2022)
The mutationathon highlights the importance of reaching standardization in estimates of pedigree-based germline mutation rates
eLife 11:e73577.
https://doi.org/10.7554/eLife.73577

Share this article

https://doi.org/10.7554/eLife.73577

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Hope M Healey, Hayden B Penn ... William A Cresko
    Research Article

    Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provided the opportunity for detailed genetic analyses. We created a single-cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined the spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting that derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how the novelties of these fish evolved.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Julie N Chuong, Nadav Ben Nun ... David Gresham
    Research Article

    Copy number variants (CNVs) are an important source of genetic variation underlying rapid adaptation and genome evolution. Whereas point mutation rates vary with genomic location and local DNA features, the role of genome architecture in the formation and evolutionary dynamics of CNVs is poorly understood. Previously, we found the GAP1 gene in Saccharomyces cerevisiae undergoes frequent amplification and selection in glutamine-limitation. The gene is flanked by two long terminal repeats (LTRs) and proximate to an origin of DNA replication (autonomously replicating sequence, ARS), which likely promote rapid GAP1 CNV formation. To test the role of these genomic elements on CNV-mediated adaptive evolution, we evolved engineered strains lacking either the adjacent LTRs, ARS, or all elements in glutamine-limited chemostats. Using a CNV reporter system and neural network simulation-based inference (nnSBI) we quantified the formation rate and fitness effect of CNVs for each strain. Removal of local DNA elements significantly impacts the fitness effect of GAP1 CNVs and the rate of adaptation. In 177 CNV lineages, across all four strains, between 26% and 80% of all GAP1 CNVs are mediated by Origin Dependent Inverted Repeat Amplification (ODIRA) which results from template switching between the leading and lagging strand during DNA synthesis. In the absence of the local ARS, distal ones mediate CNV formation via ODIRA. In the absence of local LTRs, homologous recombination can mediate gene amplification following de novo retrotransposon events. Our study reveals that template switching during DNA replication is a prevalent source of adaptive CNVs.