Strategy-dependent effects of working-memory limitations on human perceptual decision-making

  1. Kyra Schapiro  Is a corresponding author
  2. Kresimir Josic
  3. Zachary P Kilpatrick
  4. Joshua I Gold
  1. University of Pennsylvania, United States
  2. University of Houston, United States
  3. University of Colorado Boulder, United States

Abstract

Deliberative decisions based on an accumulation of evidence over time depend on working memory, and working memory has limitations, but how these limitations affect deliberative decision-making is not understood. We used human psychophysics to assess the impact of working-memory limitations on the fidelity of a continuous decision variable. Participants decided the average location of multiple visual targets. This computed, continuous decision variable degraded with time and capacity in a manner that depended critically on the strategy used to form the decision variable. This dependence reflected whether the decision variable was computed either: 1) immediately upon observing the evidence, and thus stored as a single value in memory; or 2) at the time of the report, and thus stored as multiple values in memory. These results provide important constraints on how the brain computes and maintains temporally dynamic decision variables.

Data availability

All analysis code is available on GitHub (https://github.com/TheGoldLab/Memory_Diffusion_Task). Data used for figures will be made available on Dryad.

The following data sets were generated
    1. Schapiro K
    2. Josic K
    3. Gold J
    4. Kilpatrick Z
    (2022) Memory Diffusion Task Data
    Dryad Digital Repository, doi:10.5061/dryad.w3r2280rm.

Article and author information

Author details

  1. Kyra Schapiro

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    For correspondence
    kaschapiro@aol.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8308-0744
  2. Kresimir Josic

    Department of Mathematics, University of Houston, Houston, United States
    Competing interests
    No competing interests declared.
  3. Zachary P Kilpatrick

    Department of Applied Mathematics, University of Colorado Boulder, Boulder, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2835-9416
  4. Joshua I Gold

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    Joshua I Gold, Senior editor, eLife.

Funding

National Institute of Mental Health (R01 MH115557)

  • Kresimir Josic
  • Zachary P Kilpatrick
  • Joshua I Gold

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The task was created with PsychoPy3 and distributed to participants via Pavlovia.com, which allowed participants to perform the task on their home computers after providing informed consent. These protocols were reviewed by the University of Pennsylvania Institutional Review Board (IRB) and determined to meet eligibility criteria for IRB review exemption authorized by 45 CFR 46.104, category 2.

Reviewing Editor

  1. Tobias H Donner, University Medical Center Hamburg-Eppendorf, Germany

Publication history

  1. Received: September 4, 2021
  2. Preprint posted: September 6, 2021 (view preprint)
  3. Accepted: March 10, 2022
  4. Accepted Manuscript published: March 15, 2022 (version 1)
  5. Accepted Manuscript updated: March 18, 2022 (version 2)
  6. Version of Record published: April 12, 2022 (version 3)

Copyright

© 2022, Schapiro et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 745
    Page views
  • 151
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kyra Schapiro
  2. Kresimir Josic
  3. Zachary P Kilpatrick
  4. Joshua I Gold
(2022)
Strategy-dependent effects of working-memory limitations on human perceptual decision-making
eLife 11:e73610.
https://doi.org/10.7554/eLife.73610

Further reading

    1. Computational and Systems Biology
    Shunpei Yamauchi, Takashi Nozoe ... Yuichi Wakamoto
    Research Article

    Intracellular states probed by gene expression profiles and metabolic activities are intrinsically noisy, causing phenotypic variations among cellular lineages. Understanding the adaptive and evolutionary roles of such variations requires clarifying their linkage to population growth rates. Extending a cell lineage statistics framework, here we show that a population’s growth rate can be expanded by the cumulants of a fitness landscape that characterize how fitness distributes in a population. The expansion enables quantifying the contribution of each cumulant, such as variance and skewness, to population growth. We introduce a function that contains all the essential information of cell lineage statistics, including mean lineage fitness and selection strength. We reveal a relation between fitness heterogeneity and population growth rate response to perturbation. We apply the framework to experimental cell lineage data from bacteria to mammalian cells, revealing distinct levels of growth rate gain from fitness heterogeneity across environments and organisms. Furthermore, third or higher order cumulants’ contributions are negligible under constant growth conditions but could be significant in regrowing processes from growth-arrested conditions. We identify cellular populations in which selection leads to an increase of fitness variance among lineages in retrospective statistics compared to chronological statistics. The framework assumes no particular growth models or environmental conditions, and is thus applicable to various biological phenomena for which phenotypic heterogeneity and cellular proliferation are important.

    1. Computational and Systems Biology
    Jeffrey Molendijk, Ronnie Blazev ... Benjamin L Parker
    Research Article

    Improving muscle function has great potential to improve the quality of life. To identify novel regulators of skeletal muscle metabolism and function, we performed a proteomic analysis of gastrocnemius muscle from 73 genetically distinct inbred mouse strains, and integrated the data with previously acquired genomics and >300 molecular/phenotypic traits via quantitative trait loci mapping and correlation network analysis. These data identified thousands of associations between protein abundance and phenotypes and can be accessed online (https://muscle.coffeeprot.com/) to identify regulators of muscle function. We used this resource to prioritize targets for a functional genomic screen in human bioengineered skeletal muscle. This identified several negative regulators of muscle function including UFC1, an E2 ligase for protein UFMylation. We show UFMylation is up-regulated in a mouse model of amyotrophic lateral sclerosis, a disease that involves muscle atrophy. Furthermore, in vivo knockdown of UFMylation increased contraction force, implicating its role as a negative regulator of skeletal muscle function.