Endometrium: Preparing for implantation

A new laboratory model helps to understand the role of senescent cells in fostering a uterine environment that can support an embryo.
  1. J Julie Kim  Is a corresponding author
  1. Division of Reproductive Science in Medicine and Center for Reproductive Science, Department of Obstetrics and Gynecology, Northwestern University, United States

The endometrium, the structure that lines the womb, is one of the most fascinating tissues in the human body. Every month, it grows, changes and destroys itself under the influence of the ovarian hormones estrogen and progesterone. In particular, it undergoes a series of modifications, known as decidualization, which include new types of endometrial cells emerging to help the embryo implant and survive until the placenta takes over. This ‘receptive’ phase only lasts a few days and takes place after ovulation, when progesterone levels are high.

How the endometrium can select and support an embryo has been widely researched, especially in the context of assisted reproductive technologies, recurrent miscarriages and implantation failure. Yet, given the ethical considerations of reproductive experiments and the lack of appropriate model systems, scientists still do not have a full grasp on how endometrial decidualization enables implantation.

For decades, the biology of the endometrium has primarily been studied in the laboratory using cells taken from the uterus after surgery. However, due to the way different cell types grow in dishes, certain endometrial cells are better understood than others. For instance, more is known about the stromal cells (which make up the supporting ‘connective’ tissue) than about the epithelial cells which line the endometrium and form glands secreting essential factors.

The recent emergence of organoid cultures that can mimic native tissues in the laboratory may provide a new source of information. Indeed, certain research groups have established ways to grow epithelial cells in three dimensions, while others have created organoids that comprise both epithelial and stromal cells (Wiwatpanit et al., 2020; Cheung et al., 2021; Boretto et al., 2017; Turco et al., 2017). Now, in eLife, Jan Brosens and colleagues – including Thomas Rawlings as first author – report a new laboratory model of the endometrium that can be used to explore the endometrial changes required for embryos to implant (Rawlings et al., 2021).

The team (which is based at the California Institute of Technology, University Hospitals Coventry and Warwickshire NHS Trust, and the Universities of Cambridge and Warwick) generated ‘endometrial assembloids’ that contained both stromal and epithelial cells growing in three dimensions. The cells were able to organize themselves in a manner that resembles the architecture of an actual endometrium, with gland-like structures surrounded by a bed of stromal cells.

A cocktail of ovarian hormones was applied to the assembloids for four days in order to induce decidualization. Single-cell RNA sequencing was then performed to identify different cell populations that had emerged as a response. Surprisingly, after hormone treatment, there were multiple subpopulations of stromal and epithelial cells. All cell populations exhibited unique patterns of gene expression that mapped to a specific phase in the menstrual cycle, including the receptive phase during which the endometrium can welcome an embryo.

Assembloids that had not been exposed to the hormones featured three subtypes of epithelial cells, and two types of stromal cells. However, the assembloids that had undergone decidualization carried three types of epithelial cells and three types of stromal cells: this included, as Rawlings et al. had predicted, a population of epithelial and stromal cells which had become senescent under the influence of the hormone cocktail. In this ‘suspended’ state (which is often associated with aging), cells are unable to divide but they remain biologically active and can release harmful factors that damage neighboring cells. However, senescence in the endometrium may actually be necessary for implantation to take place, a question that Rawlings et al. could explore with their new model.

The team first used a publicly available computational tool to analyze single-cell RNA data: their goal was to assess how the different cell subpopulations interact, and to predict interactions between surface receptors and their ligands. This showed intense communication between epithelial and stromal cell types; more interestingly, subsets of decidual stromal cells communicated with one another resulting in the activation of the tyrosine kinase signaling pathway, which controls many cellular processes. Exposing the assembloids to dasatinib, a cancer drug which inhibits this pathway, eliminated the emergence of decidual stromal cells that were senescent, while increasing the number of non-senescent decidual cells.

This approach allowed Rawlings et al. to model and influence senescence in order to assess its impact on early embryo development. Human embryos cultured in the presence of assembloids not exposed to dasatinib (and therefore containing senescent decidual stromal cells) could increase in diameter and move. However, assembloids treated with dasatinib appeared to restrict embryo growth and movement (Figure 1).

Senescent decidual cells promote embryo expansion and movement.

Rawlings et al. developed endometrial assembloids and exposed them to hormones to help their differentiation process. These models contain both stromal (round) and epithelial (trapezoid) cells. The three subpopulations of stromal cells are shown (predecidual in blue; decidual in orange; and senescent decidual in red). Assembloids not treated with the tyrosine kinase inhibitor dasatinib (left) promote the expansion and movement of an embryo (oval-shaped structure). Treatment with the drug (right) causes senescent decidual cells to be eliminated from the assembloid, which prevents the expansion of the embryo and restricts its movement.

Image credit: Image created with Biorender.com.

The work by Rawlings et al. highlights the importance of establishing models that closely mimic human physiology, even if it means co-culturing multiple cell types together. In turn, state-of-the-art technologies such as single-cell RNA sequencing – and their associated bioinformatic tools – can deconvolute this complexity one cell at a time. As implantation remains a poorly understood event, these new approaches could finally help to unravel the complex mechanisms that shape the endometrium for pregnancy.


Article and author information

Author details

  1. J Julie Kim

    J Julie Kim is in the Division of Reproductive Science in Medicine and Center for Reproductive Science, Department of Obstetrics and Gynecology, Northwestern University, Chicago, United States

    For correspondence
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9834-8213

Publication history

  1. Version of Record published: October 18, 2021 (version 1)


© 2021, Kim

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.


  • 651
    Page views
  • 65
  • 1

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. J Julie Kim
Endometrium: Preparing for implantation
eLife 10:e73739.

Further reading

    1. Cell Biology
    2. Evolutionary Biology
    Michael Garratt, Ilkim Erturk ... Richard A Miller
    Research Article Updated

    Several previous lines of research have suggested, indirectly, that mouse lifespan is particularly susceptible to endocrine or nutritional signals in the first few weeks of life, as tested by manipulations of litter size, growth hormone levels, or mutations with effects specifically on early-life growth rate. The pace of early development in mice can also be influenced by exposure of nursing and weanling mice to olfactory cues. In particular, odors of same-sex adult mice can in some circumstances delay maturation. We hypothesized that olfactory information might also have a sex-specific effect on lifespan, and we show here that the lifespan of female mice can be increased significantly by odors from adult females administered transiently, that is from 3 days until 60 days of age. Female lifespan was not modified by male odors, nor was male lifespan susceptible to odors from adults of either sex. Conditional deletion of the G protein Gαo in the olfactory system, which leads to impaired accessory olfactory system function and blunted reproductive priming responses to male odors in females, did not modify the effect of female odors on female lifespan. Our data provide support for the idea that very young mice are susceptible to influences that can have long-lasting effects on health maintenance in later life, and provide a potential example of lifespan extension by olfactory cues in mice.

    1. Cell Biology
    Rahul Bhattacharjee, Aaron R Hall ... Kathleen L Gould
    Research Article

    The F-BAR protein Cdc15 is essential for cytokinesis in Schizosaccharomyces pombe and plays a key role in attaching the cytokinetic ring (CR) to the plasma membrane (PM). Cdc15’s abilities to bind to the membrane and oligomerize via its F-BAR domain are inhibited by phosphorylation of its intrinsically disordered region (IDR). Multiple cell polarity kinases regulate Cdc15 IDR phosphostate, and of these the DYRK kinase Pom1 phosphorylation sites on Cdc15 have been shown in vivo to prevent CR formation at cell tips. Here, we compared the ability of Pom1 to control Cdc15 phosphostate and cortical localization to that of other Cdc15 kinases: Kin1, Pck1, and Shk1. We identified distinct but overlapping cohorts of Cdc15 phosphorylation sites targeted by each kinase, and the number of sites correlated with each kinases’ abilities to influence Cdc15 PM localization. Coarse-grained simulations predicted that cumulative IDR phosphorylation moves the IDRs of a dimer apart and toward the F-BAR tips. Further, simulations indicated that the overall negative charge of phosphorylation masks positively charged amino acids necessary for F-BAR oligomerization and membrane interaction. Finally, simulations suggested that dephosphorylated Cdc15 undergoes phase separation driven by IDR interactions. Indeed, dephosphorylated but not phosphorylated Cdc15 undergoes liquid–liquid phase separation to form droplets in vitro that recruit Cdc15 binding partners. In cells, Cdc15 phosphomutants also formed PM-bound condensates that recruit other CR components. Together, we propose that a threshold of Cdc15 phosphorylation by assorted kinases prevents Cdc15 condensation on the PM and antagonizes CR assembly.