Endometrium: Preparing for implantation
The endometrium, the structure that lines the womb, is one of the most fascinating tissues in the human body. Every month, it grows, changes and destroys itself under the influence of the ovarian hormones estrogen and progesterone. In particular, it undergoes a series of modifications, known as decidualization, which include new types of endometrial cells emerging to help the embryo implant and survive until the placenta takes over. This ‘receptive’ phase only lasts a few days and takes place after ovulation, when progesterone levels are high.
How the endometrium can select and support an embryo has been widely researched, especially in the context of assisted reproductive technologies, recurrent miscarriages and implantation failure. Yet, given the ethical considerations of reproductive experiments and the lack of appropriate model systems, scientists still do not have a full grasp on how endometrial decidualization enables implantation.
For decades, the biology of the endometrium has primarily been studied in the laboratory using cells taken from the uterus after surgery. However, due to the way different cell types grow in dishes, certain endometrial cells are better understood than others. For instance, more is known about the stromal cells (which make up the supporting ‘connective’ tissue) than about the epithelial cells which line the endometrium and form glands secreting essential factors.
The recent emergence of organoid cultures that can mimic native tissues in the laboratory may provide a new source of information. Indeed, certain research groups have established ways to grow epithelial cells in three dimensions, while others have created organoids that comprise both epithelial and stromal cells (Wiwatpanit et al., 2020; Cheung et al., 2021; Boretto et al., 2017; Turco et al., 2017). Now, in eLife, Jan Brosens and colleagues – including Thomas Rawlings as first author – report a new laboratory model of the endometrium that can be used to explore the endometrial changes required for embryos to implant (Rawlings et al., 2021).
The team (which is based at the California Institute of Technology, University Hospitals Coventry and Warwickshire NHS Trust, and the Universities of Cambridge and Warwick) generated ‘endometrial assembloids’ that contained both stromal and epithelial cells growing in three dimensions. The cells were able to organize themselves in a manner that resembles the architecture of an actual endometrium, with gland-like structures surrounded by a bed of stromal cells.
A cocktail of ovarian hormones was applied to the assembloids for four days in order to induce decidualization. Single-cell RNA sequencing was then performed to identify different cell populations that had emerged as a response. Surprisingly, after hormone treatment, there were multiple subpopulations of stromal and epithelial cells. All cell populations exhibited unique patterns of gene expression that mapped to a specific phase in the menstrual cycle, including the receptive phase during which the endometrium can welcome an embryo.
Assembloids that had not been exposed to the hormones featured three subtypes of epithelial cells, and two types of stromal cells. However, the assembloids that had undergone decidualization carried three types of epithelial cells and three types of stromal cells: this included, as Rawlings et al. had predicted, a population of epithelial and stromal cells which had become senescent under the influence of the hormone cocktail. In this ‘suspended’ state (which is often associated with aging), cells are unable to divide but they remain biologically active and can release harmful factors that damage neighboring cells. However, senescence in the endometrium may actually be necessary for implantation to take place, a question that Rawlings et al. could explore with their new model.
The team first used a publicly available computational tool to analyze single-cell RNA data: their goal was to assess how the different cell subpopulations interact, and to predict interactions between surface receptors and their ligands. This showed intense communication between epithelial and stromal cell types; more interestingly, subsets of decidual stromal cells communicated with one another resulting in the activation of the tyrosine kinase signaling pathway, which controls many cellular processes. Exposing the assembloids to dasatinib, a cancer drug which inhibits this pathway, eliminated the emergence of decidual stromal cells that were senescent, while increasing the number of non-senescent decidual cells.
This approach allowed Rawlings et al. to model and influence senescence in order to assess its impact on early embryo development. Human embryos cultured in the presence of assembloids not exposed to dasatinib (and therefore containing senescent decidual stromal cells) could increase in diameter and move. However, assembloids treated with dasatinib appeared to restrict embryo growth and movement (Figure 1).
The work by Rawlings et al. highlights the importance of establishing models that closely mimic human physiology, even if it means co-culturing multiple cell types together. In turn, state-of-the-art technologies such as single-cell RNA sequencing – and their associated bioinformatic tools – can deconvolute this complexity one cell at a time. As implantation remains a poorly understood event, these new approaches could finally help to unravel the complex mechanisms that shape the endometrium for pregnancy.
References
-
Scaffold-Free endometrial organoids respond to excess androgens associated with polycystic ovarian syndromeThe Journal of Clinical Endocrinology & Metabolism 105:769–780.https://doi.org/10.1210/clinem/dgz100
Article and author information
Author details
Publication history
Copyright
© 2021, Kim
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 89
- downloads
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
Aggregation of mutant forms of Huntingtin is the underlying feature of neurodegeneration observed in Huntington’s disorder. In addition to neurons, cellular processes in non-neuronal cell types are also shown to be affected. Cells expressing neurodegeneration–associated mutant proteins show altered uptake of ligands, suggestive of impaired endocytosis, in a manner as yet unknown. Using live cell imaging, we show that clathrin-mediated endocytosis (CME) is affected in Drosophila hemocytes and mammalian cells containing Huntingtin aggregates. This is also accompanied by alterations in the organization of the actin cytoskeleton resulting in increased cellular stiffness. Further, we find that Huntingtin aggregates sequester actin and actin-modifying proteins. Overexpression of Hip1 or Arp3 (actin-interacting proteins) could restore CME and cellular stiffness in cells containing Huntingtin aggregates. Neurodegeneration driven by pathogenic Huntingtin was also rescued upon overexpression of either Hip1 or Arp3 in Drosophila. Examination of other pathogenic aggregates revealed that TDP-43 also displayed defective CME, altered actin organization and increased stiffness, similar to pathogenic Huntingtin. Together, our results point to an intimate connection between dysfunctional CME, actin misorganization and increased cellular stiffness caused by alteration in the local intracellular environment by pathogenic aggregates.
-
- Cell Biology
Cell migration towards stiff substrates has been coined as durotaxis and implicated in development, wound healing, and cancer, where complex interplays between immune and non-immune cells are present. Compared to the emerging mechanisms underlying the strongly adhesive mesenchymal durotaxis, little is known about whether immune cells - migrating in amoeboid mode - could follow mechanical cues. Here, we develop an imaging-based confined migration device with a stiffness gradient. By tracking live cell trajectory and analyzing the directionality of T cells and neutrophils, we observe that amoeboid cells can durotax. We further delineate the underlying mechanism to involve non-muscle myosin IIA (NMIIA) polarization towards the soft-matrix-side but may not require differential actin flow up- or down-stiffness gradient. Using the protista Dictyostelium, we demonstrate the evolutionary conservation of amoeboid durotaxis. Finally, these experimental phenomena are theoretically captured by an active gel model capable of mechanosensing. Collectively, these results may shed new lights on immune surveillance and recently identified confined migration of cancer cells, within the mechanically inhomogeneous tumor microenvironment or the inflamed fibrotic tissues.