Diversification of multipotential postmitotic mouse retinal ganglion cell precursors into discrete types

  1. Karthik Shekhar  Is a corresponding author
  2. Irene E Whitney
  3. Salwan Butrus
  4. Yi-Rong Peng
  5. Joshua R Sanes  Is a corresponding author
  1. University of California, Berkeley, United States
  2. Harvard University, United States
  3. University of California, Los Angeles, United States

Abstract

The genesis of broad neuronal classes from multipotential neural progenitor cells has been extensively studied, but less is known about the diversification of a single neuronal class into multiple types. We used single-cell RNA-seq to study how newly-born (postmitotic) mouse retinal ganglion cell (RGC) precursors diversify into ~45 discrete types. Computational analysis provides evidence that RGC transcriptomic type identity is not specified at mitotic exit, but acquired by gradual, asynchronous restriction of postmitotic multipotential precursors. Some types are not identifiable until a week after they are generated. Immature RGCs may be specified to project ipsilaterally or contralaterally to the rest of the brain before their type identity emerges. Optimal transport inference identifies groups of RGC precursors with largely non-overlapping fates, distinguished by selectively expressed transcription factors that could act as fate determinants. Our study provides a framework for investigating the molecular diversification of discrete types within a neuronal class.

Data availability

Sequencing data has been submitted under GSE185671. Reviewer token : evchicgutpqpnoj.Computational scripts are available at : https://github.com/shekharlab/mouseRGCdev

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Karthik Shekhar

    Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, United States
    For correspondence
    kshekhar@berkeley.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4349-6600
  2. Irene E Whitney

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    Irene E Whitney, is affiliated with Honeycomb Biotechnologies. The author has no financial interests to declare..
  3. Salwan Butrus

    Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  4. Yi-Rong Peng

    Department of Ophthalmology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  5. Joshua R Sanes

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    For correspondence
    sanesj@mcb.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8926-8836

Funding

National Institutes of Health (R37NS029169)

  • Joshua R Sanes

National Institutes of Health (R01EY022073)

  • Joshua R Sanes

National Institutes of Health (R00EY028625)

  • Karthik Shekhar

National Science Foundation (GRP DGE1752814)

  • Salwan Butrus

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Carol A Mason, Columbia University, United States

Ethics

Animal experimentation: All animal experiments were approved by the Institutional Animal Care and Use Committees (IACUC) at Harvard University. Mice were maintained in pathogen-free facilities under standard housing conditions with continuous access to food and water. Animals used in this study include both males and females. A meta-analysis (not shown) did not show any systematic sex-related effects in either differentially expressed genes or cell-type proportions.

Version history

  1. Received: September 11, 2021
  2. Preprint posted: October 21, 2021 (view preprint)
  3. Accepted: February 21, 2022
  4. Accepted Manuscript published: February 22, 2022 (version 1)
  5. Version of Record published: March 25, 2022 (version 2)

Copyright

© 2022, Shekhar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,876
    views
  • 417
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Karthik Shekhar
  2. Irene E Whitney
  3. Salwan Butrus
  4. Yi-Rong Peng
  5. Joshua R Sanes
(2022)
Diversification of multipotential postmitotic mouse retinal ganglion cell precursors into discrete types
eLife 11:e73809.
https://doi.org/10.7554/eLife.73809

Share this article

https://doi.org/10.7554/eLife.73809

Further reading

    1. Developmental Biology
    2. Neuroscience
    Amy R Poe, Lucy Zhu ... Matthew S Kayser
    Research Article

    Sleep and feeding patterns lack strong daily rhythms during early life. As diurnal animals mature, feeding is consolidated to the day and sleep to the night. In Drosophila, circadian sleep patterns are initiated with formation of a circuit connecting the central clock to arousal output neurons; emergence of circadian sleep also enables long-term memory (LTM). However, the cues that trigger the development of this clock-arousal circuit are unknown. Here, we identify a role for nutritional status in driving sleep-wake rhythm development in Drosophila larvae. We find that in the 2nd instar larval period (L2), sleep and feeding are spread across the day; these behaviors become organized into daily patterns by the 3rd instar larval stage (L3). Forcing mature (L3) animals to adopt immature (L2) feeding strategies disrupts sleep-wake rhythms and the ability to exhibit LTM. In addition, the development of the clock (DN1a)-arousal (Dh44) circuit itself is influenced by the larval nutritional environment. Finally, we demonstrate that larval arousal Dh44 neurons act through glucose metabolic genes to drive onset of daily sleep-wake rhythms. Together, our data suggest that changes to energetic demands in developing organisms trigger the formation of sleep-circadian circuits and behaviors.

    1. Cell Biology
    2. Developmental Biology
    Filip Knop, Apolena Zounarova ... Marie Macůrková
    Research Article

    During Caenorhabditis elegans development, multiple cells migrate long distances or extend processes to reach their final position and/or attain proper shape. The Wnt signalling pathway stands out as one of the major coordinators of cell migration or cell outgrowth along the anterior-posterior body axis. The outcome of Wnt signalling is fine-tuned by various mechanisms including endocytosis. In this study, we show that SEL-5, the C. elegans orthologue of mammalian AP2-associated kinase AAK1, acts together with the retromer complex as a positive regulator of EGL-20/Wnt signalling during the migration of QL neuroblast daughter cells. At the same time, SEL-5 in cooperation with the retromer complex is also required during excretory canal cell outgrowth. Importantly, SEL-5 kinase activity is not required for its role in neuronal migration or excretory cell outgrowth, and neither of these processes is dependent on DPY-23/AP2M1 phosphorylation. We further establish that the Wnt proteins CWN-1 and CWN-2 together with the Frizzled receptor CFZ-2 positively regulate excretory cell outgrowth, while LIN-44/Wnt and LIN-17/Frizzled together generate a stop signal inhibiting its extension.