Diversification of multipotential postmitotic mouse retinal ganglion cell precursors into discrete types

  1. Karthik Shekhar  Is a corresponding author
  2. Irene E Whitney
  3. Salwan Butrus
  4. Yi-Rong Peng
  5. Joshua R Sanes  Is a corresponding author
  1. University of California, Berkeley, United States
  2. Harvard University, United States
  3. University of California, Los Angeles, United States

Abstract

The genesis of broad neuronal classes from multipotential neural progenitor cells has been extensively studied, but less is known about the diversification of a single neuronal class into multiple types. We used single-cell RNA-seq to study how newly-born (postmitotic) mouse retinal ganglion cell (RGC) precursors diversify into ~45 discrete types. Computational analysis provides evidence that RGC transcriptomic type identity is not specified at mitotic exit, but acquired by gradual, asynchronous restriction of postmitotic multipotential precursors. Some types are not identifiable until a week after they are generated. Immature RGCs may be specified to project ipsilaterally or contralaterally to the rest of the brain before their type identity emerges. Optimal transport inference identifies groups of RGC precursors with largely non-overlapping fates, distinguished by selectively expressed transcription factors that could act as fate determinants. Our study provides a framework for investigating the molecular diversification of discrete types within a neuronal class.

Data availability

Sequencing data has been submitted under GSE185671. Reviewer token : evchicgutpqpnoj.Computational scripts are available at : https://github.com/shekharlab/mouseRGCdev

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Karthik Shekhar

    Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, United States
    For correspondence
    kshekhar@berkeley.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4349-6600
  2. Irene E Whitney

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    Irene E Whitney, is affiliated with Honeycomb Biotechnologies. The author has no financial interests to declare..
  3. Salwan Butrus

    Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  4. Yi-Rong Peng

    Department of Ophthalmology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  5. Joshua R Sanes

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    For correspondence
    sanesj@mcb.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8926-8836

Funding

National Institutes of Health (R37NS029169)

  • Joshua R Sanes

National Institutes of Health (R01EY022073)

  • Joshua R Sanes

National Institutes of Health (R00EY028625)

  • Karthik Shekhar

National Science Foundation (GRP DGE1752814)

  • Salwan Butrus

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were approved by the Institutional Animal Care and Use Committees (IACUC) at Harvard University. Mice were maintained in pathogen-free facilities under standard housing conditions with continuous access to food and water. Animals used in this study include both males and females. A meta-analysis (not shown) did not show any systematic sex-related effects in either differentially expressed genes or cell-type proportions.

Copyright

© 2022, Shekhar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,379
    views
  • 461
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Karthik Shekhar
  2. Irene E Whitney
  3. Salwan Butrus
  4. Yi-Rong Peng
  5. Joshua R Sanes
(2022)
Diversification of multipotential postmitotic mouse retinal ganglion cell precursors into discrete types
eLife 11:e73809.
https://doi.org/10.7554/eLife.73809

Share this article

https://doi.org/10.7554/eLife.73809

Further reading

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.

    1. Developmental Biology
    Mengjie Li, Aiguo Tian, Jin Jiang
    Research Advance

    Stem cell self-renewal often relies on asymmetric fate determination governed by niche signals and/or cell-intrinsic factors but how these regulatory mechanisms cooperate to promote asymmetric fate decision remains poorly understood. In adult Drosophila midgut, asymmetric Notch (N) signaling inhibits intestinal stem cell (ISC) self-renewal by promoting ISC differentiation into enteroblast (EB). We have previously shown that epithelium-derived Bone Morphogenetic Protein (BMP) promotes ISC self-renewal by antagonizing N pathway activity (Tian and Jiang, 2014). Here, we show that loss of BMP signaling results in ectopic N pathway activity even when the N ligand Delta (Dl) is depleted, and that the N inhibitor Numb acts in parallel with BMP signaling to ensure a robust ISC self-renewal program. Although Numb is asymmetrically segregated in about 80% of dividing ISCs, its activity is largely dispensable for ISC fate determination under normal homeostasis. However, Numb becomes crucial for ISC self-renewal when BMP signaling is compromised. Whereas neither Mad RNA interference nor its hypomorphic mutation led to ISC loss, inactivation of Numb in these backgrounds resulted in stem cell loss due to precocious ISC-to-EB differentiation. Furthermore, we find that numb mutations resulted in stem cell loss during midgut regeneration in response to epithelial damage that causes fluctuation in BMP pathway activity, suggesting that the asymmetrical segregation of Numb into the future ISC may provide a fail-save mechanism for ISC self-renewal by offsetting BMP pathway fluctuation, which is important for ISC maintenance in regenerative guts.