Quantitative prediction of variant effects on alternative splicing in MAPT using endogenous pre-messenger RNA structure probing

  1. Jayashree Kumar
  2. Lela Lackey
  3. Justin M Waldern
  4. Abhishek Dey
  5. Anthony M Mustoe
  6. Kevin Weeks
  7. David H Mathews
  8. Alain Laederach  Is a corresponding author
  1. University of North Carolina at Chapel Hill, United States
  2. Clemson University, United States
  3. Baylor College of Medicine, United States
  4. University of Rochester, United States

Abstract

Splicing is highly regulated and is modulated by numerous factors. Quantitative predictions for how a mutation will affect precursor messenger RNA (mRNA) structure and downstream function is particularly challenging. Here we use a novel chemical probing strategy to visualize endogenous precursor and mature MAPT mRNA structures in cells. We used these data to estimate Boltzmann suboptimal structural ensembles, which were then analyzed to predict consequences of mutations on precursor mRNA structure. Further analysis of recent cryo-EM structures of the spliceosome at different stages of the splicing cycle revealed that the footprint of the Bact complex with precursor mRNA best predicted alternative splicing outcomes for exon 10 inclusion of the alternatively spliced MAPT gene, achieving 74% accuracy. We further developed a b-regression weighting framework that incorporates splice site strength, RNA structure, and exonic/intronic splicing regulatory elements capable of predicting, with 90% accuracy, the effects of 47 known and six newly discovered mutations on inclusion of exon 10 of MAPT. This combined experimental and computational framework represents a path forward for accurate prediction of splicing-related disease-causing variants.

Data availability

Sequencing data have been deposited in SRA under BioProject ID PRJNA762079 and PRJNA812003.DMS Reactivities are available as SNRNASMs at https://bit.ly/2WaDw6FAll data generated or analyzed during this study are included in the manuscript and supporting files; Source Data files have been provided for Figures 1,2,4,5 and 6.Modeling and feature generation code is uploaded at https://git.io/JuSW8

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Jayashree Kumar

    Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6914-748X
  2. Lela Lackey

    Department of Genetics and Biochemistry, Clemson University, Greenwood, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Justin M Waldern

    Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Abhishek Dey

    Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Anthony M Mustoe

    Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kevin Weeks

    Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. David H Mathews

    Department of Biochemistry and Biophysics, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Alain Laederach

    Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    For correspondence
    alain@unc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5088-9907

Funding

National Institutes of Health (R01 HL111527)

  • Alain Laederach

National Institutes of Health (R35 GM 140844)

  • Alain Laederach

National Institutes of Health (R01 GM076485)

  • David H Mathews

National Institutes of Health (R35 GM122532)

  • Kevin Weeks

Cancer Prevention and Research Institute of Texas (CPRIT Scholar)

  • Anthony M Mustoe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jonathan P Staley, University of Chicago, United States

Publication history

  1. Preprint posted: September 13, 2021 (view preprint)
  2. Received: September 14, 2021
  3. Accepted: June 12, 2022
  4. Accepted Manuscript published: June 13, 2022 (version 1)
  5. Version of Record published: June 27, 2022 (version 2)

Copyright

© 2022, Kumar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,301
    Page views
  • 350
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jayashree Kumar
  2. Lela Lackey
  3. Justin M Waldern
  4. Abhishek Dey
  5. Anthony M Mustoe
  6. Kevin Weeks
  7. David H Mathews
  8. Alain Laederach
(2022)
Quantitative prediction of variant effects on alternative splicing in MAPT using endogenous pre-messenger RNA structure probing
eLife 11:e73888.
https://doi.org/10.7554/eLife.73888

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Xiangkun Wu, Hong Yan ... Li Liang
    Research Article

    Colorectal cancer (CRC) remains a challenging and deadly disease with high tumor microenvironment (TME) heterogeneity. Using an integrative multi-omics analysis and artificial intelligence-enabled spatial analysis of whole-slide images, we performed a comprehensive characterization of TME in colorectal cancer (CCCRC). CRC samples were classified into four CCCRC subtypes with distinct TME features, namely, C1 as the proliferative subtype with low immunogenicity; C2 as the immunosuppressed subtype with the terminally exhausted immune characteristics; C3 as the immune-excluded subtype with the distinct upregulation of stromal components and a lack of T cell infiltration in the tumor core; and C4 as the immunomodulatory subtype with the remarkable upregulation of anti-tumor immune components. The four CCCRC subtypes had distinct histopathologic and molecular characteristics, therapeutic efficacy, and prognosis. We found that the C1 subtype may be suitable for chemotherapy and cetuximab, the C2 subtype may benefit from a combination of chemotherapy and bevacizumab, the C3 subtype has increased sensitivity to the WNT pathway inhibitor WIKI4, and the C4 subtype is a potential candidate for immune checkpoint blockade treatment. Importantly, we established a simple gene classifier for accurate identification of each CCCRC subtype. Collectively our integrative analysis ultimately established a holistic framework to thoroughly dissect the TME of CRC, and the CCCRC classification system with high biological interpretability may contribute to biomarker discovery and future clinical trial design.

    1. Computational and Systems Biology
    2. Neuroscience
    Bo Shen, Kenway Louie, Paul W Glimcher
    Research Article

    Inhibition is crucial for brain function, regulating network activity by balancing excitation and implementing gain control. Recent evidence suggests that beyond simply inhibiting excitatory activity, inhibitory neurons can also shape circuit function through disinhibition. While disinhibitory circuit motifs have been implicated in cognitive processes including learning, attentional selection, and input gating, the role of disinhibition is largely unexplored in the study of decision-making. Here, we show that disinhibition provides a simple circuit motif for fast, dynamic control of network state and function. This dynamic control allows a disinhibition-based decision model to reproduce both value normalization and winner-take-all dynamics, the two central features of neurobiological decision-making captured in separate existing models with distinct circuit motifs. In addition, the disinhibition model exhibits flexible attractor dynamics consistent with different forms of persistent activity seen in working memory. Fitting the model to empirical data shows it captures well both the neurophysiological dynamics of value coding and psychometric choice behavior. Furthermore, the biological basis of disinhibition provides a simple mechanism for flexible top-down control of the network states, enabling the circuit to capture diverse task-dependent neural dynamics. These results suggest a biologically plausible unifying mechanism for decision-making and emphasize the importance of local disinhibition in neural processing.