Xbp1 and Brachyury establish an evolutionarily conserved subcircuit of the notochord gene regulatory network
Abstract
Gene regulatory networks coordinate the formation of organs and structures that compose the evolving body plans of different organisms. We are using a simple chordate model, the Ciona embryo, to investigate the essential gene regulatory network that orchestrates morphogenesis of the notochord, a structure necessary for the proper development of all chordate embryos. Although numerous transcription factors expressed in the notochord have been identified in different chordates, several of them remain to be positioned within a regulatory framework. Here we focus on Xbp1, a transcription factor expressed during notochord formation in Ciona and other chordates. Through the identification of Xbp1-downstream notochord genes in Ciona, we found evidence of the early co-option of genes involved in the unfolded protein response to the notochord developmental program. We report the regulatory interplay between Xbp1 and Brachyury, and by extending these results to Xenopus, we show that Brachyury and Xbp1 form a cross-regulatory subcircuit of the notochord gene regulatory network that has been consolidated during chordate evolution.
Data availability
The complete dataset has been deposited into the NCBI Gene Expression Omnibus, under accession number GSE46751
Article and author information
Author details
Funding
National Institutes of Health (R03HD098395)
- Yushi Wu
- Arun Devotta
- Diana S José-Edwards
- Jamie E Kugler
- Lenny J Negrón-Piñeiro
- Karina Braslavskaya
- Jermyn Addy
- Anna Di Gregorio
National Institutes of Health (graduate student training grant,T32HD007520)
- Lenny J Negrón-Piñeiro
National Institutes of Health (graduate student training grant,T32GM008539)
- Diana S José-Edwards
National Institutes of Health (Administrative supplement R03HD098395-02S1)
- Lenny J Negrón-Piñeiro
New York University Center for Skeletal and Craniofacial Biology (Pilot grant)
- Yushi Wu
- Arun Devotta
- Diana S José-Edwards
- Jamie E Kugler
- Lenny J Negrón-Piñeiro
- Karina Braslavskaya
- Jermyn Addy
- Jean-Pierre Saint-Jeannet
- Anna Di Gregorio
National Institutes of Health (Center Core Grant for the NYU CSCB 1P30DE020754)
- Jean-Pierre Saint-Jeannet
National Institutes of Health (Center Grant for NYU Langone Health DART Microscopy Laboratory P30CA016087)
- Yushi Wu
- Anna Di Gregorio
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: Procedure minimizing discomfort and pain - only applicable to XenopusThe collection of eggs from females primed with chorionic gonadotropin hormone requires minimum procedures occasioning virtually no pain or suffering. Surgical dissection of the testes is performed on euthanized males (see below), preventing discomfort.Methods of euthanasiaMale frogs will be euthanized during the procedure, in a two-step process. They will be initially anesthetized by immersion into a solution of ethyl amino benzoate (tricaine/MS222) and then a pithing procedure of the brain and the spinal cord will be used to terminate the animal. After pithing, respiration ceases signaling death. Female frogs will be euthanized in a similar manner when no longer producing viable eggs or appear ill.
Copyright
© 2022, Wu et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,189
- views
-
- 213
- downloads
-
- 6
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
- Genetics and Genomics
The establishment and growth of the arterial endothelium requires the coordinated expression of numerous genes. However, regulation of this process is not yet fully understood. Here, we combined in silico analysis with transgenic mice and zebrafish models to characterize arterial-specific enhancers associated with eight key arterial identity genes (Acvrl1/Alk1, Cxcr4, Cxcl12, Efnb2, Gja4/Cx37, Gja5/Cx40, Nrp1 and Unc5b). Next, to elucidate the regulatory pathways upstream of arterial gene transcription, we investigated the transcription factors binding each arterial enhancer compared to a similar assessment of non-arterial endothelial enhancers. These results found that binding of SOXF and ETS factors was a common occurrence at both arterial and pan-endothelial enhancers, suggesting neither are sufficient to direct arterial specificity. Conversely, FOX motifs independent of ETS motifs were over-represented at arterial enhancers. Further, MEF2 and RBPJ binding was enriched but not ubiquitous at arterial enhancers, potentially linked to specific patterns of behaviour within the arterial endothelium. Lastly, there was no shared or arterial-specific signature for WNT-associated TCF/LEF, TGFβ/BMP-associated SMAD1/5 and SMAD2/3, shear stress-associated KLF4 or venous-enriched NR2F2. This cohort of well characterized and in vivo-verified enhancers can now provide a platform for future studies into the interaction of different transcriptional and signalling pathways with arterial gene expression.
-
- Developmental Biology
- Genetics and Genomics
Paternal obesity has been implicated in adult-onset metabolic disease in offspring. However, the molecular mechanisms driving these paternal effects and the developmental processes involved remain poorly understood. One underexplored possibility is the role of paternally induced effects on placenta development and function. To address this, we investigated paternal high-fat diet-induced obesity in relation to sperm histone H3 lysine 4 tri-methylation signatures, the placenta transcriptome, and cellular composition. C57BL6/J male mice were fed either a control or high-fat diet for 10 weeks beginning at 6 weeks of age. Males were timed-mated with control-fed C57BL6/J females to generate pregnancies, followed by collection of sperm, and placentas at embryonic day (E)14.5. Chromatin immunoprecipitation targeting histone H3 lysine 4 tri-methylation (H3K4me3) followed by sequencing (ChIP-seq) was performed on sperm to define obesity-associated changes in enrichment. Paternal obesity corresponded with altered sperm H3K4me3 at promoters of genes involved in metabolism and development. Notably, altered sperm H3K4me3 was also localized at placental enhancers. Bulk RNA-sequencing on placentas revealed paternal obesity-associated sex-specific changes in expression of genes involved in hypoxic processes such as angiogenesis, nutrient transport, and imprinted genes, with a subset of de-regulated genes showing changes in H3K4me3 in sperm at corresponding promoters. Paternal obesity was also linked to impaired placenta development; specifically, a deconvolution analysis revealed altered trophoblast cell lineage specification. These findings implicate paternal obesity effects on placenta development and function as one potential developmental route to offspring metabolic disease.