Abstract

Gene regulatory networks coordinate the formation of organs and structures that compose the evolving body plans of different organisms. We are using a simple chordate model, the Ciona embryo, to investigate the essential gene regulatory network that orchestrates morphogenesis of the notochord, a structure necessary for the proper development of all chordate embryos. Although numerous transcription factors expressed in the notochord have been identified in different chordates, several of them remain to be positioned within a regulatory framework. Here we focus on Xbp1, a transcription factor expressed during notochord formation in Ciona and other chordates. Through the identification of Xbp1-downstream notochord genes in Ciona, we found evidence of the early co-option of genes involved in the unfolded protein response to the notochord developmental program. We report the regulatory interplay between Xbp1 and Brachyury, and by extending these results to Xenopus, we show that Brachyury and Xbp1 form a cross-regulatory subcircuit of the notochord gene regulatory network that has been consolidated during chordate evolution.

Data availability

The complete dataset has been deposited into the NCBI Gene Expression Omnibus, under accession number GSE46751

The following data sets were generated

Article and author information

Author details

  1. Yushi Wu

    Department of Molecular Pathobiology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Arun Devotta

    Department of Molecular Pathobiology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Diana S José-Edwards

    Department of Molecular Pathobiology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jamie E Kugler

    Department of Molecular Pathobiology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Lenny J Negrón-Piñeiro

    Department of Molecular Pathobiology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Karina Braslavskaya

    Department of Molecular Pathobiology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jermyn Addy

    Department of Molecular Pathobiology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jean-Pierre Saint-Jeannet

    Department of Molecular Pathobiology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3259-2103
  9. Anna Di Gregorio

    Department of Molecular Pathobiology, New York University, New York, United States
    For correspondence
    adg13@nyu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4089-7484

Funding

National Institutes of Health (R03HD098395)

  • Yushi Wu
  • Arun Devotta
  • Diana S José-Edwards
  • Jamie E Kugler
  • Lenny J Negrón-Piñeiro
  • Karina Braslavskaya
  • Jermyn Addy
  • Anna Di Gregorio

National Institutes of Health (graduate student training grant,T32HD007520)

  • Lenny J Negrón-Piñeiro

National Institutes of Health (graduate student training grant,T32GM008539)

  • Diana S José-Edwards

National Institutes of Health (Administrative supplement R03HD098395-02S1)

  • Lenny J Negrón-Piñeiro

New York University Center for Skeletal and Craniofacial Biology (Pilot grant)

  • Yushi Wu
  • Arun Devotta
  • Diana S José-Edwards
  • Jamie E Kugler
  • Lenny J Negrón-Piñeiro
  • Karina Braslavskaya
  • Jermyn Addy
  • Jean-Pierre Saint-Jeannet
  • Anna Di Gregorio

National Institutes of Health (Center Core Grant for the NYU CSCB 1P30DE020754)

  • Jean-Pierre Saint-Jeannet

National Institutes of Health (Center Grant for NYU Langone Health DART Microscopy Laboratory P30CA016087)

  • Yushi Wu
  • Anna Di Gregorio

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Procedure minimizing discomfort and pain - only applicable to XenopusThe collection of eggs from females primed with chorionic gonadotropin hormone requires minimum procedures occasioning virtually no pain or suffering. Surgical dissection of the testes is performed on euthanized males (see below), preventing discomfort.Methods of euthanasiaMale frogs will be euthanized during the procedure, in a two-step process. They will be initially anesthetized by immersion into a solution of ethyl amino benzoate (tricaine/MS222) and then a pithing procedure of the brain and the spinal cord will be used to terminate the animal. After pithing, respiration ceases signaling death. Female frogs will be euthanized in a similar manner when no longer producing viable eggs or appear ill.

Reviewing Editor

  1. Marianne E Bronner, California Institute of Technology, United States

Publication history

  1. Received: September 17, 2021
  2. Accepted: January 19, 2022
  3. Accepted Manuscript published: January 20, 2022 (version 1)
  4. Version of Record published: January 31, 2022 (version 2)

Copyright

© 2022, Wu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 831
    Page views
  • 183
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yushi Wu
  2. Arun Devotta
  3. Diana S José-Edwards
  4. Jamie E Kugler
  5. Lenny J Negrón-Piñeiro
  6. Karina Braslavskaya
  7. Jermyn Addy
  8. Jean-Pierre Saint-Jeannet
  9. Anna Di Gregorio
(2022)
Xbp1 and Brachyury establish an evolutionarily conserved subcircuit of the notochord gene regulatory network
eLife 11:e73992.
https://doi.org/10.7554/eLife.73992

Further reading

    1. Developmental Biology
    Tsz Long Chu, Peikai Chen ... Kathryn Song Eng Cheah
    Research Article Updated

    Bone homeostasis is regulated by hormones such as parathyroid hormone (PTH). While PTH can stimulate osteo-progenitor expansion and bone synthesis, how the PTH-signaling intensity in progenitors is controlled is unclear. Endochondral bone osteoblasts arise from perichondrium-derived osteoprogenitors and hypertrophic chondrocytes (HC). We found, via single-cell transcriptomics, that HC-descendent cells activate membrane-type 1 metalloproteinase 14 (MMP14) and the PTH pathway as they transition to osteoblasts in neonatal and adult mice. Unlike Mmp14 global knockouts, postnatal day 10 (p10) HC lineage-specific Mmp14 null mutants (Mmp14ΔHC) produce more bone. Mechanistically, MMP14 cleaves the extracellular domain of PTH1R, dampening PTH signaling, and consistent with the implied regulatory role, in Mmp14ΔHC mutants, PTH signaling is enhanced. We found that HC-derived osteoblasts contribute ~50% of osteogenesis promoted by treatment with PTH 1–34, and this response was amplified in Mmp14ΔHC. MMP14 control of PTH signaling likely applies also to both HC- and non-HC-derived osteoblasts because their transcriptomes are highly similar. Our study identifies a novel paradigm of MMP14 activity-mediated modulation of PTH signaling in the osteoblast lineage, contributing new insights into bone metabolism with therapeutic significance for bone-wasting diseases.

    1. Biochemistry and Chemical Biology
    2. Developmental Biology
    Zengdi Zhang, Zan Huang ... Hai-Bin Ruan
    Research Article Updated

    In mammals, interactions between the bone marrow (BM) stroma and hematopoietic progenitors contribute to bone-BM homeostasis. Perinatal bone growth and ossification provide a microenvironment for the transition to definitive hematopoiesis; however, mechanisms and interactions orchestrating the development of skeletal and hematopoietic systems remain largely unknown. Here, we establish intracellular O-linked β-N-acetylglucosamine (O-GlcNAc) modification as a posttranslational switch that dictates the differentiation fate and niche function of early BM stromal cells (BMSCs). By modifying and activating RUNX2, O-GlcNAcylation promotes osteogenic differentiation of BMSCs and stromal IL-7 expression to support lymphopoiesis. In contrast, C/EBPβ-dependent marrow adipogenesis and expression of myelopoietic stem cell factor (SCF) is inhibited by O-GlcNAcylation. Ablating O-GlcNAc transferase (OGT) in BMSCs leads to impaired bone formation, increased marrow adiposity, as well as defective B-cell lymphopoiesis and myeloid overproduction in mice. Thus, the balance of osteogenic and adipogenic differentiation of BMSCs is determined by reciprocal O-GlcNAc regulation of transcription factors, which simultaneously shapes the hematopoietic niche.