Defining hierarchical protein interaction networks from spectral analysis of bacterial proteomes

  1. Mark A Zaydman  Is a corresponding author
  2. Alexander A Little
  3. Fidel Haro
  4. Valeryia Aksianiuk
  5. William J Buchser
  6. Aaron DiAntonio
  7. Jeffrey I Gordon
  8. Jeffrey Milbrandt
  9. Arjun S Raman  Is a corresponding author
  1. Washington University in St. Louis, United States
  2. University of Chicago, United States

Abstract

Cellular behaviors emerge from layers of molecular interactions: proteins interact to form complexes, pathways, and phenotypes. We show that hierarchical networks of protein interactions can be defined from the statistical pattern of proteome variation measured across thousands of diverse bacteria and that these networks reflect the emergence of complex bacterial phenotypes. Our results are validated through gene-set enrichment analysis and comparison to existing experimentally-derived databases. We demonstrate the biological utility of our approach by creating a model of motility in Pseudomonas aeruginosa and using it to identify a protein that affects pilus-mediated motility. Our method, SCALES (Spectral Correlation Analysis of Layered Evolutionary Signals), may be useful for interrogating genotype-phenotype relationships in bacteria.

Data availability

All data relevant to this manuscript can be downloaded, in Table format, at www.github.com/arjunsraman/Zaydman_et_al. All tables are available for download in .zip format. All code used for analyses contained within the manuscript can also be found within the same github repository; please refer to Readme.m and Supplemental_Code_9_23_2020.m for relevant Matlab scripts and to reproduce results.

Article and author information

Author details

  1. Mark A Zaydman

    Department of Pathology, Washington University in St. Louis, St Louis, United States
    For correspondence
    zaydmanm@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Alexander A Little

    Duchossois Family Institute, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Fidel Haro

    Duchossois Family Institute, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Valeryia Aksianiuk

    Duchossois Family Institute, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. William J Buchser

    Department of Genetics, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Aaron DiAntonio

    Department of Developmental Biology, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7262-0968
  7. Jeffrey I Gordon

    Department of Pathology, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8304-3548
  8. Jeffrey Milbrandt

    Department of Genetics, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Arjun S Raman

    Duchossois Family Institute, University of Chicago, Chicago, United States
    For correspondence
    araman@bsd.uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0070-1953

Funding

No external funding was received for this work.

Copyright

© 2022, Zaydman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,707
    views
  • 279
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mark A Zaydman
  2. Alexander A Little
  3. Fidel Haro
  4. Valeryia Aksianiuk
  5. William J Buchser
  6. Aaron DiAntonio
  7. Jeffrey I Gordon
  8. Jeffrey Milbrandt
  9. Arjun S Raman
(2022)
Defining hierarchical protein interaction networks from spectral analysis of bacterial proteomes
eLife 11:e74104.
https://doi.org/10.7554/eLife.74104

Share this article

https://doi.org/10.7554/eLife.74104

Further reading

    1. Computational and Systems Biology
    2. Medicine
    Xin Zhou, Zhinuo Jenny Wang ... Blanca Rodriguez
    Research Article

    Sudden death after myocardial infarction (MI) is associated with electrophysiological heterogeneities and ionic current remodelling. Low ejection fraction (EF) is used in risk stratification, but its mechanistic links with pro-arrhythmic heterogeneities are unknown. We aim to provide mechanistic explanations of clinical phenotypes in acute and chronic MI, from ionic current remodelling to ECG and EF, using human electromechanical modelling and simulation to augment experimental and clinical investigations. A human ventricular electromechanical modelling and simulation framework is constructed and validated with rich experimental and clinical datasets, incorporating varying degrees of ionic current remodelling as reported in literature. In acute MI, T-wave inversion and Brugada phenocopy were explained by conduction abnormality and local action potential prolongation in the border zone. In chronic MI, upright tall T-waves highlight large repolarisation dispersion between the border and remote zones, which promoted ectopic propagation at fast pacing. Post-MI EF at resting heart rate was not sensitive to the extent of repolarisation heterogeneity and the risk of repolarisation abnormalities at fast pacing. T-wave and QT abnormalities are better indicators of repolarisation heterogeneities than EF in post-MI.

    1. Computational and Systems Biology
    Alessandro Bitto
    Insight

    Measuring mitochondrial respiration in frozen tissue samples provides the first comprehensive atlas of how aging affects mitochondrial function in mice.