Tonic inhibition of the chloride/proton antiporter ClC-7 by PI(3,5)P2 is crucial for lysosomal pH maintenance

Abstract

The acidic luminal pH of lysosomes, maintained within a narrow range, is essential for proper degrative function of the organelle and is generated by the action of a V-type H+ ATPase, but other pathways for ion movement are required to dissipate the voltage generated by this process. ClC-7, a Cl-/H+ antiporter responsible for lysosomal Cl- permeability, is a candidate to contribute to the acidification process as part of this 'counterion pathway'. The signaling lipid PI(3,5)P2 modulates lysosomal dynamics, including by regulating lysosomal ion channels, raising the possibility that it could contribute to lysosomal pH regulation. Here we demonstrate that depleting PI(3,5)P2 by inhibiting the PIKfyve kinase causes lysosomal hyperacidification, primarily via an effect on ClC-7. We further show that PI(3,5)P2 directly inhibits ClC-7 transport and that this inhibition is eliminated in a disease-causing gain-of-function ClC-7 mutation. Together these observations suggest an intimate role for ClC-7 in lysosomal pH regulation.

Data availability

All analyzed data are included in the manuscript

Article and author information

Author details

  1. Xavier Leray

    Membrane Transport Biophysics Section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2107-6082
  2. Jacob K Hilton

    Membrane Transport Biophysics Section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1931-9516
  3. Kamsi Nwangwu

    Membrane Transport Biophysics Section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3446-8539
  4. Alissa Becerril

    Membrane Transport Biophysics Section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Vedrana Mikusevic

    Membrane Transport Biophysics Section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9666-9571
  6. Gabriel Fitzgerald

    Membrane Transport Biophysics Section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Anowarul Amin

    Membrane Transport Biophysics Section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Mary R Weston

    Membrane Transport Biophysics Section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Joseph A Mindell

    Membrane Transport Biophysics Section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    For correspondence
    mindellj@ninds.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6952-8247

Funding

National Institute of Neurological Disorders and Stroke

  • Xavier Leray
  • Jacob K Hilton
  • Kamsi Nwangwu
  • Alissa Becerril
  • Vedrana Mikusevic
  • Gabriel Fitzgerald
  • Anowarul Amin
  • Mary R Weston
  • Joseph A Mindell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,574
    views
  • 582
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xavier Leray
  2. Jacob K Hilton
  3. Kamsi Nwangwu
  4. Alissa Becerril
  5. Vedrana Mikusevic
  6. Gabriel Fitzgerald
  7. Anowarul Amin
  8. Mary R Weston
  9. Joseph A Mindell
(2022)
Tonic inhibition of the chloride/proton antiporter ClC-7 by PI(3,5)P2 is crucial for lysosomal pH maintenance
eLife 11:e74136.
https://doi.org/10.7554/eLife.74136

Share this article

https://doi.org/10.7554/eLife.74136

Further reading

    1. Structural Biology and Molecular Biophysics
    Lukas Frey, Dhiman Ghosh ... Jason Greenwald
    Research Article

    The aggregation of the protein α-synuclein is closely associated with several neurodegenerative disorders and as such the structures of the amyloid fibril aggregates have high scientific and medical significance. However, there are dozens of unique atomic-resolution structures of these aggregates, and such a highly polymorphic nature of the α-synuclein fibrils hampers efforts in disease-relevant in vitro studies on α-synuclein amyloid aggregation. In order to better understand the factors that affect polymorph selection, we studied the structures of α-synuclein fibrils in vitro as a function of pH and buffer using cryo-EM helical reconstruction. We find that in the physiological range of pH 5.8–7.4, a pH-dependent selection between Type 1, 2, and 3 polymorphs occurs. Our results indicate that even in the presence of seeds, the polymorph selection during aggregation is highly dependent on the buffer conditions, attributed to the non-polymorph-specific nature of secondary nucleation. We also uncovered two new polymorphs that occur at pH 7.0 in phosphate-buffered saline. The first is a monofilament Type 1 fibril that highly resembles the structure of the juvenile-onset synucleinopathy polymorph found in patient-derived material. The second is a new Type 5 polymorph that resembles a polymorph that has been recently reported in a study that used diseased tissues to seed aggregation. Taken together, our results highlight the shallow amyloid energy hypersurface that can be altered by subtle changes in the environment, including the pH which is shown to play a major role in polymorph selection and in many cases appears to be the determining factor in seeded aggregation. The results also suggest the possibility of producing disease-relevant structure in vitro.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Vikas Navratna, Arvind Kumar ... Shyamal Mosalaganti
    Research Article

    Degradation of heparan sulfate (HS), a glycosaminoglycan (GAG) comprised of repeating units of N-acetylglucosamine and glucuronic acid, begins in the cytosol and is completed in the lysosomes. Acetylation of the terminal non-reducing amino group of α-D-glucosamine of HS is essential for its complete breakdown into monosaccharides and free sulfate. Heparan-α-glucosaminide N-acetyltransferase (HGSNAT), a resident of the lysosomal membrane, catalyzes this essential acetylation reaction by accepting and transferring the acetyl group from cytosolic acetyl-CoA to terminal α-D-glucosamine of HS in the lysosomal lumen. Mutation-induced dysfunction in HGSNAT causes abnormal accumulation of HS within the lysosomes and leads to an autosomal recessive neurodegenerative lysosomal storage disorder called mucopolysaccharidosis IIIC (MPS IIIC). There are no approved drugs or treatment strategies to cure or manage the symptoms of, MPS IIIC. Here, we use cryo-electron microscopy (cryo-EM) to determine a high-resolution structure of the HGSNAT-acetyl-CoA complex, the first step in the HGSNAT-catalyzed acetyltransferase reaction. In addition, we map the known MPS IIIC mutations onto the structure and elucidate the molecular basis for mutation-induced HGSNAT dysfunction.