Regulation of immune receptor kinase plasma membrane nanoscale organization by a plant peptide hormone and its receptors

  1. Julien Gronnier  Is a corresponding author
  2. Christina M Franck
  3. Martin Stegmann
  4. Thomas A DeFalco
  5. Alicia Abarca
  6. Michelle Von Arx
  7. Kai Dünser
  8. Wenwei Lin
  9. Zhenbiao Yang
  10. Jürgen Kleine-Vehn
  11. Christoph Ringli
  12. Cyril Zipfel  Is a corresponding author
  1. University of Zurich, Switzerland
  2. Technical University of Munich, Germany
  3. University of Natural Resources and Life Sciences, Austria
  4. Fujian Agriculture and Forestry University, China
  5. University of Freiburg, Germany

Abstract

Spatial partitioning is a propensity of biological systems orchestrating cell activities in space and time. The dynamic regulation of plasma membrane nano-environments has recently emerged as a key fundamental aspect of plant signaling, but the molecular components governing it are still mostly unclear. The receptor kinase FERONIA (FER) controls ligand-induced complex formation of the immune receptor kinase FLAGELLIN SENSING 2 (FLS2) with its co-receptor BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1), and perception of the endogenous peptide hormone RAPID ALKALANIZATION FACTOR 23 (RALF23) by FER inhibits immunity. Here, we show that FER regulates the plasma membrane nanoscale organization of FLS2 and BAK1. Our study demonstrates that akin to FER, leucine-rich repeat (LRR) extensin proteins (LRXs) contribute to RALF23 responsiveness, regulate BAK1 nanoscale organization and immune signaling. Furthermore, RALF23 perception leads to rapid modulation of FLS2 and BAK1 nanoscale organization, and its inhibitory activity on immune signaling relies on FER kinase activity. Our results suggest that perception of RALF peptides by FER and LRXs actively modulates plasma membrane nanoscale organization to regulate cell surface signaling by other ligand-binding receptor kinases.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Julien Gronnier

    Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
    For correspondence
    julien.gronnier@zmbp.uni-tuebingen.de
    Competing interests
    No competing interests declared.
  2. Christina M Franck

    Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  3. Martin Stegmann

    Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
    Competing interests
    No competing interests declared.
  4. Thomas A DeFalco

    Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  5. Alicia Abarca

    Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3569-851X
  6. Michelle Von Arx

    Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  7. Kai Dünser

    Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
    Competing interests
    No competing interests declared.
  8. Wenwei Lin

    FAFU-UCR Joint Center for Horticultural Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
    Competing interests
    No competing interests declared.
  9. Zhenbiao Yang

    FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou, China
    Competing interests
    No competing interests declared.
  10. Jürgen Kleine-Vehn

    Department of Molecular Plant Physiology, University of Freiburg, Freiburg, Germany
    Competing interests
    Jürgen Kleine-Vehn, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4354-3756
  11. Christoph Ringli

    Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  12. Cyril Zipfel

    Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
    For correspondence
    cyril.zipfel@botinst.uzh.ch
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4935-8583

Funding

H2020 European Research Council (309858)

  • Cyril Zipfel

Deutsche Forschungsgemeinschaft (STE 2448/1)

  • Martin Stegmann

H2020 European Research Council (773153)

  • Cyril Zipfel

LTF-EMBO (438-2018)

  • Julien Gronnier

LTF-EMBO (512-2019)

  • Christina M Franck

LTF-EMBO (100-2017)

  • Thomas A DeFalco

H2020 European Research Council (639678)

  • Jürgen Kleine-Vehn

Swiss National Science Foundation (31003A_182625)

  • Cyril Zipfel

Swiss National Science Foundation (31003A_166577/1)

  • Christoph Ringli

Austrian Science Fund (P 33044)

  • Jürgen Kleine-Vehn

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Gronnier et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,219
    views
  • 1,034
    downloads
  • 79
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Julien Gronnier
  2. Christina M Franck
  3. Martin Stegmann
  4. Thomas A DeFalco
  5. Alicia Abarca
  6. Michelle Von Arx
  7. Kai Dünser
  8. Wenwei Lin
  9. Zhenbiao Yang
  10. Jürgen Kleine-Vehn
  11. Christoph Ringli
  12. Cyril Zipfel
(2022)
Regulation of immune receptor kinase plasma membrane nanoscale organization by a plant peptide hormone and its receptors
eLife 11:e74162.
https://doi.org/10.7554/eLife.74162

Share this article

https://doi.org/10.7554/eLife.74162

Further reading

    1. Cell Biology
    Kaili Du, Hongyu Chen ... Dan Li
    Research Article

    Niemann–Pick disease type C (NPC) is a devastating lysosomal storage disease characterized by abnormal cholesterol accumulation in lysosomes. Currently, there is no treatment for NPC. Transcription factor EB (TFEB), a member of the microphthalmia transcription factors (MiTF), has emerged as a master regulator of lysosomal function and promoted the clearance of substrates stored in cells. However, it is not known whether TFEB plays a role in cholesterol clearance in NPC disease. Here, we show that transgenic overexpression of TFEB, but not TFE3 (another member of MiTF family) facilitates cholesterol clearance in various NPC1 cell models. Pharmacological activation of TFEB by sulforaphane (SFN), a previously identified natural small-molecule TFEB agonist by us, can dramatically ameliorate cholesterol accumulation in human and mouse NPC1 cell models. In NPC1 cells, SFN induces TFEB nuclear translocation via a ROS-Ca2+-calcineurin-dependent but MTOR-independent pathway and upregulates the expression of TFEB-downstream genes, promoting lysosomal exocytosis and biogenesis. While genetic inhibition of TFEB abolishes the cholesterol clearance and exocytosis effect by SFN. In the NPC1 mouse model, SFN dephosphorylates/activates TFEB in the brain and exhibits potent efficacy of rescuing the loss of Purkinje cells and body weight. Hence, pharmacological upregulating lysosome machinery via targeting TFEB represents a promising approach to treat NPC and related lysosomal storage diseases, and provides the possibility of TFEB agonists, that is, SFN as potential NPC therapeutic candidates.

    1. Cell Biology
    2. Developmental Biology
    Sarah Y Coomson, Salil A Lachke
    Insight

    A study in mice reveals key interactions between proteins involved in fibroblast growth factor signaling and how they contribute to distinct stages of eye lens development.