Regulation of immune receptor kinase plasma membrane nanoscale organization by a plant peptide hormone and its receptors

  1. Julien Gronnier  Is a corresponding author
  2. Christina M Franck
  3. Martin Stegmann
  4. Thomas A DeFalco
  5. Alicia Abarca
  6. Michelle Von Arx
  7. Kai Dünser
  8. Wenwei Lin
  9. Zhenbiao Yang
  10. Jürgen Kleine-Vehn
  11. Christoph Ringli
  12. Cyril Zipfel  Is a corresponding author
  1. University of Zurich, Switzerland
  2. Technical University of Munich, Germany
  3. University of Natural Resources and Life Sciences, Austria
  4. Fujian Agriculture and Forestry University, China
  5. University of Freiburg, Germany

Abstract

Spatial partitioning is a propensity of biological systems orchestrating cell activities in space and time. The dynamic regulation of plasma membrane nano-environments has recently emerged as a key fundamental aspect of plant signaling, but the molecular components governing it are still mostly unclear. The receptor kinase FERONIA (FER) controls ligand-induced complex formation of the immune receptor kinase FLAGELLIN SENSING 2 (FLS2) with its co-receptor BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1), and perception of the endogenous peptide hormone RAPID ALKALANIZATION FACTOR 23 (RALF23) by FER inhibits immunity. Here, we show that FER regulates the plasma membrane nanoscale organization of FLS2 and BAK1. Our study demonstrates that akin to FER, leucine-rich repeat (LRR) extensin proteins (LRXs) contribute to RALF23 responsiveness, regulate BAK1 nanoscale organization and immune signaling. Furthermore, RALF23 perception leads to rapid modulation of FLS2 and BAK1 nanoscale organization, and its inhibitory activity on immune signaling relies on FER kinase activity. Our results suggest that perception of RALF peptides by FER and LRXs actively modulates plasma membrane nanoscale organization to regulate cell surface signaling by other ligand-binding receptor kinases.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Julien Gronnier

    Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
    For correspondence
    julien.gronnier@zmbp.uni-tuebingen.de
    Competing interests
    No competing interests declared.
  2. Christina M Franck

    Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  3. Martin Stegmann

    Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
    Competing interests
    No competing interests declared.
  4. Thomas A DeFalco

    Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  5. Alicia Abarca

    Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3569-851X
  6. Michelle Von Arx

    Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  7. Kai Dünser

    Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
    Competing interests
    No competing interests declared.
  8. Wenwei Lin

    FAFU-UCR Joint Center for Horticultural Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
    Competing interests
    No competing interests declared.
  9. Zhenbiao Yang

    FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou, China
    Competing interests
    No competing interests declared.
  10. Jürgen Kleine-Vehn

    Department of Molecular Plant Physiology, University of Freiburg, Freiburg, Germany
    Competing interests
    Jürgen Kleine-Vehn, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4354-3756
  11. Christoph Ringli

    Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  12. Cyril Zipfel

    Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
    For correspondence
    cyril.zipfel@botinst.uzh.ch
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4935-8583

Funding

H2020 European Research Council (309858)

  • Cyril Zipfel

Deutsche Forschungsgemeinschaft (STE 2448/1)

  • Martin Stegmann

H2020 European Research Council (773153)

  • Cyril Zipfel

LTF-EMBO (438-2018)

  • Julien Gronnier

LTF-EMBO (512-2019)

  • Christina M Franck

LTF-EMBO (100-2017)

  • Thomas A DeFalco

H2020 European Research Council (639678)

  • Jürgen Kleine-Vehn

Swiss National Science Foundation (31003A_182625)

  • Cyril Zipfel

Swiss National Science Foundation (31003A_166577/1)

  • Christoph Ringli

Austrian Science Fund (P 33044)

  • Jürgen Kleine-Vehn

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Gronnier et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,040
    views
  • 1,010
    downloads
  • 72
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Julien Gronnier
  2. Christina M Franck
  3. Martin Stegmann
  4. Thomas A DeFalco
  5. Alicia Abarca
  6. Michelle Von Arx
  7. Kai Dünser
  8. Wenwei Lin
  9. Zhenbiao Yang
  10. Jürgen Kleine-Vehn
  11. Christoph Ringli
  12. Cyril Zipfel
(2022)
Regulation of immune receptor kinase plasma membrane nanoscale organization by a plant peptide hormone and its receptors
eLife 11:e74162.
https://doi.org/10.7554/eLife.74162

Share this article

https://doi.org/10.7554/eLife.74162

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article Updated

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.

    1. Cell Biology
    2. Medicine
    Yongli Qin, Jumpei Shirakawa ... Baohong Zhao
    Research Article

    The IncRNA Malat1 was initially believed to be dispensable for physiology due to the lack of observable phenotypes in Malat1 knockout (KO) mice. However, our study challenges this conclusion. We found that both Malat1 KO and conditional KO mice in the osteoblast lineage exhibit significant osteoporosis. Mechanistically, Malat1 acts as an intrinsic regulator in osteoblasts to promote osteogenesis. Interestingly, Malat1 does not directly affect osteoclastogenesis but inhibits osteoclastogenesis in a non-autonomous manner in vivo via integrating crosstalk between multiple cell types, including osteoblasts, osteoclasts, and chondrocytes. Our findings substantiate the existence of a novel remodeling network in which Malat1 serves as a central regulator by binding to β-catenin and functioning through the β-catenin-OPG/Jagged1 pathway in osteoblasts and chondrocytes. In pathological conditions, Malat1 significantly promotes bone regeneration in fracture healing. Bone homeostasis and regeneration are crucial to well-being. Our discoveries establish a previous unrecognized paradigm model of Malat1 function in the skeletal system, providing novel mechanistic insights into how a lncRNA integrates cellular crosstalk and molecular networks to fine tune tissue homeostasis, remodeling and repair.