Pathogen infection and cholesterol deficiency activate the C. elegans p38 immune pathway through a TIR-1/SARM1 phase transition

  1. Nicholas D Peterson
  2. Janneke D Icso
  3. J. Elizabeth Salisbury
  4. Tomás Rodríguez
  5. Paul R Thompson  Is a corresponding author
  6. Read Pukkila-Worley  Is a corresponding author
  1. University of Massachusetts Chan Medical School, United States
  2. University of Massachusetts Medical School, United States

Abstract

Intracellular signaling regulators can be concentrated into membrane-free, higher-ordered protein assemblies to initiate protective responses during stress - a process known as phase transition. Here, we show that a phase transition of the Caenorhabditis elegans Toll/interleukin-1 receptor domain protein (TIR-1), an NAD+ glycohydrolase homologous to mammalian sterile alpha and TIR motif-containing 1 (SARM1), underlies p38 PMK-1 immune pathway activation in C. elegans intestinal epithelial cells. Through visualization of fluorescently labeled TIR-1/SARM1 protein, we demonstrate that physiologic stresses, both pathogen and non-pathogen, induce multimerization of TIR-1/SARM1 into visible puncta within intestinal epithelial cells. In vitro enzyme kinetic analyses revealed that, like mammalian SARM1, the NAD+ glycohydrolase activity of C. elegans TIR-1 is dramatically potentiated by protein oligomerization and a phase transition. Accordingly, C. elegans with genetic mutations that specifically block either multimerization or the NAD+ glycohydrolase activity of TIR-1/SARM1 fail to induce p38 PMK phosphorylation, are unable to increase immune effector expression, and are dramatically susceptible to bacterial infection. Finally, we demonstrate that a loss-of-function mutation in nhr-8, which alters cholesterol metabolism and is used to study conditions of sterol deficiency, causes TIR-1/SARM1 to oligomerize into puncta in intestinal epithelial cells. Cholesterol scarcity increases p38 PMK-1 phosphorylation, primes immune effector induction in a manner that requires TIR-1/SARM1 oligomerization and its intrinsic NAD+ glycohydrolase activity, and reduces pathogen accumulation in the intestine during a subsequent infection. These data reveal a new adaptive response that allows a metazoan host to anticipate pathogen threats during cholesterol deprivation, a time of relative susceptibility to infection. Thus, a phase transition of TIR-1/SARM1 as a prerequisite for its NAD+ glycohydrolase activity is strongly conserved across millions of years of evolution and is essential for diverse physiological processes in multiple cell types.

Data availability

The mRNA-seq datasets are available from the NCBI Gene Expression Omnibus using the accession numbers GSE178572 and GSE190585.Source data files are provided for all figures.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Nicholas D Peterson

    Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4157-8119
  2. Janneke D Icso

    Program in Chemical Biology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. J. Elizabeth Salisbury

    Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Tomás Rodríguez

    RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8724-5427
  5. Paul R Thompson

    Department of Biochemistry and Pharmacology, University of Massachusetts Medical School, Worcester, United States
    For correspondence
    Paul.Thompson@umassmed.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1621-3372
  6. Read Pukkila-Worley

    Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, United States
    For correspondence
    read.pukkila-worley@umassmed.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5340-8294

Funding

National Institute of Allergy and Infectious Diseases (R01 AI130289)

  • Read Pukkila-Worley

National Institute of Allergy and Infectious Diseases (R01 AI159159)

  • Read Pukkila-Worley

National Institute of Allergy and Infectious Diseases (R21 AI163430)

  • Read Pukkila-Worley

Kenneth Rainin Foundation (Innovator Award)

  • Read Pukkila-Worley

National Institute of Allergy and Infectious Diseases (F30 AI150127)

  • Nicholas D Peterson

National Institute of Allergy and Infectious Diseases (T32 AI132152)

  • Nicholas D Peterson
  • Janneke D Icso

National Institute of General Medical Sciences (T32 GM107000)

  • Nicholas D Peterson

National Institute of Neurological Disorders and Stroke (F31 NS122423)

  • Janneke D Icso

National Institute of General Medical Sciences (R35 GM118112)

  • Paul R Thompson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jan Gruber, Yale-NUS College, Singapore

Version history

  1. Preprint posted: August 6, 2021 (view preprint)
  2. Received: September 25, 2021
  3. Accepted: January 28, 2022
  4. Accepted Manuscript published: January 31, 2022 (version 1)
  5. Version of Record published: March 15, 2022 (version 2)
  6. Version of Record updated: March 21, 2022 (version 3)

Copyright

© 2022, Peterson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,349
    Page views
  • 473
    Downloads
  • 20
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicholas D Peterson
  2. Janneke D Icso
  3. J. Elizabeth Salisbury
  4. Tomás Rodríguez
  5. Paul R Thompson
  6. Read Pukkila-Worley
(2022)
Pathogen infection and cholesterol deficiency activate the C. elegans p38 immune pathway through a TIR-1/SARM1 phase transition
eLife 11:e74206.
https://doi.org/10.7554/eLife.74206

Share this article

https://doi.org/10.7554/eLife.74206

Further reading

    1. Immunology and Inflammation
    Toyoshi Yanagihara, Kentaro Hata ... Isamu Okamoto
    Research Article

    Anticancer treatments can result in various adverse effects, including infections due to immune suppression/dysregulation and drug-induced toxicity in the lung. One of the major opportunistic infections is Pneumocystis jirovecii pneumonia (PCP), which can cause severe respiratory complications and high mortality rates. Cytotoxic drugs and immune-checkpoint inhibitors (ICIs) can induce interstitial lung diseases (ILDs). Nonetheless, the differentiation of these diseases can be difficult, and the pathogenic mechanisms of such diseases are not yet fully understood. To better comprehend the immunophenotypes, we conducted an exploratory mass cytometry analysis of immune cell subsets in bronchoalveolar lavage fluid from patients with PCP, cytotoxic drug-induced ILD (DI-ILD), and ICI-associated ILD (ICI-ILD) using two panels containing 64 markers. In PCP, we observed an expansion of the CD16+ T cell population, with the highest CD16+ T proportion in a fatal case. In ICI-ILD, we found an increase in CD57+ CD8+ T cells expressing immune checkpoints (TIGIT+ LAG3+ TIM-3+ PD-1+), FCRL5+ B cells, and CCR2+ CCR5+ CD14+ monocytes. These findings uncover the diverse immunophenotypes and possible pathomechanisms of cancer treatment-related pneumonitis.

    1. Developmental Biology
    2. Immunology and Inflammation
    Amir Hossein Kayvanjoo, Iva Splichalova ... Elvira Mass
    Research Article Updated

    During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.