Early anteroposterior regionalisation of human neural crest is shaped by a pro-mesodermal factor

  1. Antigoni Gogolou
  2. Celine Souilhol
  3. Ilaria Granata
  4. Filip J Wymeersch
  5. Ichcha Manipur
  6. Matthew Wind
  7. Thomas JR Frith
  8. Maria Guarini
  9. Alessandro Bertero
  10. Christoph Bock
  11. Florian Halbritter
  12. Minoru Takasato
  13. Mario R Guarracino
  14. Anestis Tsakiridis  Is a corresponding author
  1. University of Sheffield, United Kingdom
  2. National Research Council, Italy
  3. RIKEN Center for Biosystems Dynamics Research, Japan
  4. Austrian Academy of Sciences, Austria
  5. University of Torino, Italy
  6. St. Anna Children's Cancer Research Institute, Austria
  7. University of Cassino and Southern Lazio, Italy

Abstract

The neural crest (NC) is an important multipotent embryonic cell population and its impaired specification leads to various developmental defects, often in an anteroposterior (A-P) axial level-specific manner. The mechanisms underlying the correct A-P regionalisation of human NC cells remain elusive. Recent studies have indicated that trunk NC cells, the presumed precursors of the childhood tumour neuroblastoma, are derived from neuromesodermal-potent progenitors of the postcranial body (NMPs). Here we employ human embryonic stem cell differentiation to define how NMP-derived NC cells acquire a posterior axial identity. We show that TBXT, a pro-mesodermal transcription factor, mediates early posterior NC/spinal cord regionalisation together with WNT signalling effectors. This occurs by TBXT-driven chromatin remodelling via its binding in key enhancers within HOX gene clusters and other posterior regulator-associated loci. This initial posteriorisation event is succeeded by a second phase of trunk HOX gene control that marks the differentiation of NMPs toward their TBXT-negative NC/spinal cord derivatives and relies predominantly on FGF signalling. Our work reveals a previously unknown role of TBXT in influencing posterior NC fate and points to the existence of temporally discrete, cell type-dependent modes of posterior axial identity control.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE184622, GSE184620 and GSE184227

The following data sets were generated

Article and author information

Author details

  1. Antigoni Gogolou

    Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Celine Souilhol

    Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Ilaria Granata

    Computational and Data Science Laboratory, National Research Council, Napoli, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Filip J Wymeersch

    Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8999-4555
  5. Ichcha Manipur

    Computational and Data Science Laboratory, National Research Council, Napoli, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Matthew Wind

    Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Thomas JR Frith

    Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Maria Guarini

    CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  9. Alessandro Bertero

    Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
    Competing interests
    The authors declare that no competing interests exist.
  10. Christoph Bock

    CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6091-3088
  11. Florian Halbritter

    Developmental Cancer Genomics, St. Anna Children's Cancer Research Institute, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  12. Minoru Takasato

    Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0458-7414
  13. Mario R Guarracino

    University of Cassino and Southern Lazio, Cassino, Italy
    Competing interests
    The authors declare that no competing interests exist.
  14. Anestis Tsakiridis

    Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    For correspondence
    a.tsakiridis@sheffield.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2184-2990

Funding

Biotechnology and Biological Sciences Research Council (BB/P000444/1)

  • Anestis Tsakiridis

Horizon 2020 Framework Programme (824070)

  • Anestis Tsakiridis

Medical Research Council (MR/V002163/1)

  • Anestis Tsakiridis

Children's Cancer and Leukaemia Group (CCLGA 2019 28)

  • Anestis Tsakiridis

Japan Society for the Promotion of Science (JP19K16157)

  • Filip J Wymeersch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were approved by the Institutional Animal Experiments Committee of RIKEN Kobe Branch (A2016-03-10). Mice were handled in accordance with the ethics guidelines of the institute.

Copyright

© 2022, Gogolou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,516
    views
  • 428
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.74263

Further reading

    1. Developmental Biology
    Eric R Brooks, Andrew R Moorman ... Jennifer A Zallen
    Tools and Resources

    The formation of the mammalian brain requires regionalization and morphogenesis of the cranial neural plate, which transforms from an epithelial sheet into a closed tube that provides the structural foundation for neural patterning and circuit formation. Sonic hedgehog (SHH) signaling is important for cranial neural plate patterning and closure, but the transcriptional changes that give rise to the spatially regulated cell fates and behaviors that build the cranial neural tube have not been systematically analyzed. Here, we used single-cell RNA sequencing to generate an atlas of gene expression at six consecutive stages of cranial neural tube closure in the mouse embryo. Ordering transcriptional profiles relative to the major axes of gene expression predicted spatially regulated expression of 870 genes along the anterior-posterior and mediolateral axes of the cranial neural plate and reproduced known expression patterns with over 85% accuracy. Single-cell RNA sequencing of embryos with activated SHH signaling revealed distinct SHH-regulated transcriptional programs in the developing forebrain, midbrain, and hindbrain, suggesting a complex interplay between anterior-posterior and mediolateral patterning systems. These results define a spatiotemporally resolved map of gene expression during cranial neural tube closure and provide a resource for investigating the transcriptional events that drive early mammalian brain development.

    1. Developmental Biology
    Mehmet Mahsum Kaplan, Erika Hudacova ... Ondrej Machon
    Research Article

    Hair follicle development is initiated by reciprocal molecular interactions between the placode-forming epithelium and the underlying mesenchyme. Cell fate transformation in dermal fibroblasts generates a cell niche for placode induction by activation of signaling pathways WNT, EDA, and FGF in the epithelium. These successive paracrine epithelial signals initiate dermal condensation in the underlying mesenchyme. Although epithelial signaling from the placode to mesenchyme is better described, little is known about primary mesenchymal signals resulting in placode induction. Using genetic approach in mice, we show that Meis2 expression in cells derived from the neural crest is critical for whisker formation and also for branching of trigeminal nerves. While whisker formation is independent of the trigeminal sensory innervation, MEIS2 in mesenchymal dermal cells orchestrates the initial steps of epithelial placode formation and subsequent dermal condensation. MEIS2 regulates the expression of transcription factor Foxd1, which is typical of pre-dermal condensation. However, deletion of Foxd1 does not affect whisker development. Overall, our data suggest an early role of mesenchymal MEIS2 during whisker formation and provide evidence that whiskers can normally develop in the absence of sensory innervation or Foxd1 expression.