Early anteroposterior regionalisation of human neural crest is shaped by a pro-mesodermal factor

  1. Antigoni Gogolou
  2. Celine Souilhol
  3. Ilaria Granata
  4. Filip J Wymeersch
  5. Ichcha Manipur
  6. Matthew Wind
  7. Thomas JR Frith
  8. Maria Guarini
  9. Alessandro Bertero
  10. Christoph Bock
  11. Florian Halbritter
  12. Minoru Takasato
  13. Mario R Guarracino
  14. Anestis Tsakiridis  Is a corresponding author
  1. University of Sheffield, United Kingdom
  2. National Research Council, Italy
  3. RIKEN Center for Biosystems Dynamics Research, Japan
  4. Austrian Academy of Sciences, Austria
  5. University of Torino, Italy
  6. St. Anna Children's Cancer Research Institute, Austria
  7. University of Cassino and Southern Lazio, Italy

Abstract

The neural crest (NC) is an important multipotent embryonic cell population and its impaired specification leads to various developmental defects, often in an anteroposterior (A-P) axial level-specific manner. The mechanisms underlying the correct A-P regionalisation of human NC cells remain elusive. Recent studies have indicated that trunk NC cells, the presumed precursors of the childhood tumour neuroblastoma, are derived from neuromesodermal-potent progenitors of the postcranial body (NMPs). Here we employ human embryonic stem cell differentiation to define how NMP-derived NC cells acquire a posterior axial identity. We show that TBXT, a pro-mesodermal transcription factor, mediates early posterior NC/spinal cord regionalisation together with WNT signalling effectors. This occurs by TBXT-driven chromatin remodelling via its binding in key enhancers within HOX gene clusters and other posterior regulator-associated loci. This initial posteriorisation event is succeeded by a second phase of trunk HOX gene control that marks the differentiation of NMPs toward their TBXT-negative NC/spinal cord derivatives and relies predominantly on FGF signalling. Our work reveals a previously unknown role of TBXT in influencing posterior NC fate and points to the existence of temporally discrete, cell type-dependent modes of posterior axial identity control.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE184622, GSE184620 and GSE184227

The following data sets were generated

Article and author information

Author details

  1. Antigoni Gogolou

    Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Celine Souilhol

    Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Ilaria Granata

    Computational and Data Science Laboratory, National Research Council, Napoli, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Filip J Wymeersch

    Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8999-4555
  5. Ichcha Manipur

    Computational and Data Science Laboratory, National Research Council, Napoli, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Matthew Wind

    Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Thomas JR Frith

    Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Maria Guarini

    CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  9. Alessandro Bertero

    Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
    Competing interests
    The authors declare that no competing interests exist.
  10. Christoph Bock

    CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6091-3088
  11. Florian Halbritter

    Developmental Cancer Genomics, St. Anna Children's Cancer Research Institute, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  12. Minoru Takasato

    Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0458-7414
  13. Mario R Guarracino

    University of Cassino and Southern Lazio, Cassino, Italy
    Competing interests
    The authors declare that no competing interests exist.
  14. Anestis Tsakiridis

    Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    For correspondence
    a.tsakiridis@sheffield.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2184-2990

Funding

Biotechnology and Biological Sciences Research Council (BB/P000444/1)

  • Anestis Tsakiridis

Horizon 2020 Framework Programme (824070)

  • Anestis Tsakiridis

Medical Research Council (MR/V002163/1)

  • Anestis Tsakiridis

Children's Cancer and Leukaemia Group (CCLGA 2019 28)

  • Anestis Tsakiridis

Japan Society for the Promotion of Science (JP19K16157)

  • Filip J Wymeersch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marianne E Bronner, California Institute of Technology, United States

Ethics

Animal experimentation: All animal experiments were approved by the Institutional Animal Experiments Committee of RIKEN Kobe Branch (A2016-03-10). Mice were handled in accordance with the ethics guidelines of the institute.

Version history

  1. Preprint posted: September 24, 2021 (view preprint)
  2. Received: September 27, 2021
  3. Accepted: September 25, 2022
  4. Accepted Manuscript published: September 26, 2022 (version 1)
  5. Version of Record published: October 6, 2022 (version 2)

Copyright

© 2022, Gogolou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,119
    views
  • 403
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Antigoni Gogolou
  2. Celine Souilhol
  3. Ilaria Granata
  4. Filip J Wymeersch
  5. Ichcha Manipur
  6. Matthew Wind
  7. Thomas JR Frith
  8. Maria Guarini
  9. Alessandro Bertero
  10. Christoph Bock
  11. Florian Halbritter
  12. Minoru Takasato
  13. Mario R Guarracino
  14. Anestis Tsakiridis
(2022)
Early anteroposterior regionalisation of human neural crest is shaped by a pro-mesodermal factor
eLife 11:e74263.
https://doi.org/10.7554/eLife.74263

Share this article

https://doi.org/10.7554/eLife.74263

Further reading

    1. Developmental Biology
    Zhimin Xu, Zhao Wang ... Yingchuan B Qi
    Research Article

    Precise developmental timing control is essential for organism formation and function, but its mechanisms are unclear. In C. elegans, the microRNA lin-4 critically regulates developmental timing by post-transcriptionally downregulating the larval-stage-fate controller LIN-14. However, the mechanisms triggering the activation of lin-4 expression toward the end of the first larval stage remain unknown. We demonstrate that the transmembrane transcription factor MYRF-1 is necessary for lin-4 activation. MYRF-1 is initially localized on the cell membrane, and its increased cleavage and nuclear accumulation coincide with lin-4 expression timing. MYRF-1 regulates lin-4 expression cell-autonomously and hyperactive MYRF-1 can prematurely drive lin-4 expression in embryos and young first-stage larvae. The tandem lin-4 promoter DNA recruits MYRF-1GFP to form visible loci in the nucleus, suggesting that MYRF-1 directly binds to the lin-4 promoter. Our findings identify a crucial link in understanding developmental timing regulation and establish MYRF-1 as a key regulator of lin-4 expression.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Samuel C Griffiths, Jia Tan ... Hsin-Yi Henry Ho
    Research Article Updated

    The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, brachydactyly B, and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.