Early anteroposterior regionalisation of human neural crest is shaped by a pro-mesodermal factor

  1. Antigoni Gogolou
  2. Celine Souilhol
  3. Ilaria Granata
  4. Filip J Wymeersch
  5. Ichcha Manipur
  6. Matthew Wind
  7. Thomas JR Frith
  8. Maria Guarini
  9. Alessandro Bertero
  10. Christoph Bock
  11. Florian Halbritter
  12. Minoru Takasato
  13. Mario R Guarracino
  14. Anestis Tsakiridis  Is a corresponding author
  1. University of Sheffield, United Kingdom
  2. National Research Council, Italy
  3. RIKEN Center for Biosystems Dynamics Research, Japan
  4. Austrian Academy of Sciences, Austria
  5. University of Torino, Italy
  6. St. Anna Children's Cancer Research Institute, Austria
  7. University of Cassino and Southern Lazio, Italy

Abstract

The neural crest (NC) is an important multipotent embryonic cell population and its impaired specification leads to various developmental defects, often in an anteroposterior (A-P) axial level-specific manner. The mechanisms underlying the correct A-P regionalisation of human NC cells remain elusive. Recent studies have indicated that trunk NC cells, the presumed precursors of the childhood tumour neuroblastoma, are derived from neuromesodermal-potent progenitors of the postcranial body (NMPs). Here we employ human embryonic stem cell differentiation to define how NMP-derived NC cells acquire a posterior axial identity. We show that TBXT, a pro-mesodermal transcription factor, mediates early posterior NC/spinal cord regionalisation together with WNT signalling effectors. This occurs by TBXT-driven chromatin remodelling via its binding in key enhancers within HOX gene clusters and other posterior regulator-associated loci. This initial posteriorisation event is succeeded by a second phase of trunk HOX gene control that marks the differentiation of NMPs toward their TBXT-negative NC/spinal cord derivatives and relies predominantly on FGF signalling. Our work reveals a previously unknown role of TBXT in influencing posterior NC fate and points to the existence of temporally discrete, cell type-dependent modes of posterior axial identity control.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE184622, GSE184620 and GSE184227

The following data sets were generated

Article and author information

Author details

  1. Antigoni Gogolou

    Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Celine Souilhol

    Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Ilaria Granata

    Computational and Data Science Laboratory, National Research Council, Napoli, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Filip J Wymeersch

    Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8999-4555
  5. Ichcha Manipur

    Computational and Data Science Laboratory, National Research Council, Napoli, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Matthew Wind

    Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Thomas JR Frith

    Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Maria Guarini

    CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  9. Alessandro Bertero

    Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
    Competing interests
    The authors declare that no competing interests exist.
  10. Christoph Bock

    CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6091-3088
  11. Florian Halbritter

    Developmental Cancer Genomics, St. Anna Children's Cancer Research Institute, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  12. Minoru Takasato

    Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0458-7414
  13. Mario R Guarracino

    University of Cassino and Southern Lazio, Cassino, Italy
    Competing interests
    The authors declare that no competing interests exist.
  14. Anestis Tsakiridis

    Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    For correspondence
    a.tsakiridis@sheffield.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2184-2990

Funding

Biotechnology and Biological Sciences Research Council (BB/P000444/1)

  • Anestis Tsakiridis

Horizon 2020 Framework Programme (824070)

  • Anestis Tsakiridis

Medical Research Council (MR/V002163/1)

  • Anestis Tsakiridis

Children's Cancer and Leukaemia Group (CCLGA 2019 28)

  • Anestis Tsakiridis

Japan Society for the Promotion of Science (JP19K16157)

  • Filip J Wymeersch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were approved by the Institutional Animal Experiments Committee of RIKEN Kobe Branch (A2016-03-10). Mice were handled in accordance with the ethics guidelines of the institute.

Copyright

© 2022, Gogolou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,368
    views
  • 417
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Antigoni Gogolou
  2. Celine Souilhol
  3. Ilaria Granata
  4. Filip J Wymeersch
  5. Ichcha Manipur
  6. Matthew Wind
  7. Thomas JR Frith
  8. Maria Guarini
  9. Alessandro Bertero
  10. Christoph Bock
  11. Florian Halbritter
  12. Minoru Takasato
  13. Mario R Guarracino
  14. Anestis Tsakiridis
(2022)
Early anteroposterior regionalisation of human neural crest is shaped by a pro-mesodermal factor
eLife 11:e74263.
https://doi.org/10.7554/eLife.74263

Share this article

https://doi.org/10.7554/eLife.74263

Further reading

    1. Developmental Biology
    Pénélope Tignard, Karen Pottin ... Marie Anne Breau
    Research Article

    Despite recent progress, the complex roles played by the extracellular matrix in development and disease are still far from being fully understood. Here, we took advantage of the zebrafish sly mutation which affects Laminin γ1, a major component of basement membranes, to explore its role in the development of the olfactory system. Following a detailed characterisation of Laminin distribution in the developing olfactory circuit, we analysed basement membrane integrity, olfactory placode and brain morphogenesis, and olfactory axon development in sly mutants, using a combination of immunochemistry, electron microscopy and quantitative live imaging of cell movements and axon behaviours. Our results point to an original and dual contribution of Laminin γ1-dependent basement membranes in organising the border between the olfactory placode and the adjacent brain: they maintain placode shape and position in the face of major brain morphogenetic movements, they establish a robust physical barrier between the two tissues while at the same time allowing the local entry of the sensory axons into the brain and their navigation towards the olfactory bulb. This work thus identifies key roles of Laminin γ1-dependent basement membranes in neuronal tissue morphogenesis and axon development in vivo.

    1. Developmental Biology
    Natsuko Emura, Florence DM Wavreil ... Mamiko Yajima
    Research Article

    The evolutionary introduction of asymmetric cell division (ACD) into the developmental program facilitates the formation of a new cell type, contributing to developmental diversity and, eventually, species diversification. The micromere of the sea urchin embryo may serve as one of those examples: an ACD at the 16-cell stage forms micromeres unique to echinoids among echinoderms. We previously reported that a polarity factor, activator of G-protein signaling (AGS), plays a crucial role in micromere formation. However, AGS and its associated ACD factors are present in all echinoderms and across most metazoans. This raises the question of what evolutionary modifications of AGS protein or its surrounding molecular environment contributed to the evolutionary acquisition of micromeres only in echinoids. In this study, we learned that the GoLoco motifs at the AGS C-terminus play critical roles in regulating micromere formation in sea urchin embryos. Further, other echinoderms’ AGS or chimeric AGS that contain the C-terminus of AGS orthologs from various organisms showed varied localization and function in micromere formation. In contrast, the sea star or the pencil urchin orthologs of other ACD factors were consistently localized at the vegetal cortex in the sea urchin embryo, suggesting that AGS may be a unique variable factor that facilitates ACD diversity among echinoderms. Consistently, sea urchin AGS appears to facilitate micromere-like cell formation and accelerate the enrichment timing of the germline factor Vasa during early embryogenesis of the pencil urchin, an ancestral type of sea urchin. Based on these observations, we propose that the molecular evolution of a single polarity factor facilitates ACD diversity while preserving the core ACD machinery among echinoderms and beyond during evolution.