Robust T cell activation requires an eIF3-driven burst in T cell receptor translation
Abstract
Activation of T cells requires a rapid surge in cellular protein synthesis. However, the role of translation initiation in the early induction of specific genes remains unclear. Here we show human translation initiation factor eIF3 interacts with select immune system related mRNAs including those encoding the T cell receptor (TCR) subunits TCRA and TCRB. Binding of eIF3 to the TCRA and TCRB mRNA 3'-untranslated regions (3'-UTRs) depends on CD28 coreceptor signaling and regulates a burst in TCR translation required for robust T cell activation. Use of the TCRA or TCRB 3'-UTRs to control expression of an anti-CD19 chimeric antigen receptor (CAR) improves the ability of CAR-T cells to kill tumor cells in vitro. These results identify a new mechanism of eIF3-mediated translation control that can aid T cell engineering for immunotherapy applications.
Data availability
Sequencing data has been deposited in GEO (GSE191306).Code used to analyze the microscopy images is available on github at https://github.com/Llamero/TCR_colocalization_analysis-macro
-
Genome-wide mapping of eIF3-RNA interactions in Jurkat cells using PAR-CLIPNCBI Gene Expression Omnibus, GSE191306.
Article and author information
Author details
Funding
National Institutes of Health (R01-GM065050)
- Dasmanthie DeSilva
- Grant H Chin
- Jamie HD Cate
Cancer Research Institute (N/A)
- Alexander Marson
Chan Zuckerberg Initiative (N/A)
- Ryan A Apathy
- Theodore L Roth
- Alexander Marson
Innovative Genomics Institute (N/A)
- Ryan A Apathy
- Theodore L Roth
- Alexander Marson
Parker Institute for Cancer Immunotherapy (N/A)
- Alexander Marson
Tang Prize for Biopharmaceutical Science (N/A)
- Jamie HD Cate
Damon Runyon Cancer Research Foundation (DRR#37-15)
- Nicholas T Ingolia
National Institutes of Health (DP2 CA195768)
- Lucas Ferguson
- Marek Kudla
- Nicholas T Ingolia
National Institutes of Health (P30EY003176)
- Benjamin E Smith
National Institutes of Health (S10 OD018174)
- Dasmanthie DeSilva
Care-for-Rare Foundation (N/A)
- Franziska Blaeschke
German Research Foundation (N/A)
- Franziska Blaeschke
Burroughs Wellcome Fund (N/A)
- Alexander Marson
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2021, DeSilva et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,284
- views
-
- 585
- downloads
-
- 22
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
Discovering new strategies to combat the multidrug-resistant bacteria constitutes a major medical challenge of our time. Previously, artesunate (AS) has been reported to exert antibacterial enhancement activity in combination with β-lactam antibiotics via inhibition of the efflux pump AcrB. However, combination of AS and colistin (COL) revealed a weak synergistic effect against a limited number of strains, and few studies have further explored its possible mechanism of synergistic action. In this article, we found that AS and EDTA could strikingly enhance the antibacterial effects of COL against mcr-1- and mcr-1+ Salmonella strains either in vitro or in vivo, when used in triple combination. The excellent bacteriostatic effect was primarily related to the increased cell membrane damage, accumulation of toxic compounds and inhibition of MCR-1. The potential binding sites of AS to MCR-1 (THR283, SER284, and TYR287) were critical for its inhibition of MCR-1 activity. Additionally, we also demonstrated that the CheA of chemosensory system and virulence-related protein SpvD were critical for the bacteriostatic synergistic effects of the triple combination. Selectively targeting CheA, SpvD, or MCR using the natural compound AS could be further investigated as an attractive strategy for the treatment of Salmonella infection. Collectively, our work opens new avenues toward the potentiation of COL and reveals an alternative drug combination strategy to overcome COL-resistant bacterial infections.
-
- Cell Biology
- Genetics and Genomics
Progression through the G1 phase of the cell cycle is the most highly regulated step in cellular division. We employed a chemogenetic approach to discover novel cellular networks that regulate cell cycle progression. This approach uncovered functional clusters of genes that altered sensitivity of cells to inhibitors of the G1/S transition. Mutation of components of the Polycomb Repressor Complex 2 rescued proliferation inhibition caused by the CDK4/6 inhibitor palbociclib, but not to inhibitors of S phase or mitosis. In addition to its core catalytic subunits, mutation of the PRC2.1 accessory protein MTF2, but not the PRC2.2 protein JARID2, rendered cells resistant to palbociclib treatment. We found that PRC2.1 (MTF2), but not PRC2.2 (JARID2), was critical for promoting H3K27me3 deposition at CpG islands genome-wide and in promoters. This included the CpG islands in the promoter of the CDK4/6 cyclins CCND1 and CCND2, and loss of MTF2 lead to upregulation of both CCND1 and CCND2. Our results demonstrate a role for PRC2.1, but not PRC2.2, in antagonizing G1 progression in a diversity of cell linages, including chronic myeloid leukemia (CML), breast cancer, and immortalized cell lines.