Robust T cell activation requires an eIF3-driven burst in T cell receptor translation

  1. Dasmanthie DeSilva
  2. Lucas Ferguson
  3. Grant H Chin
  4. Benjamin E Smith
  5. Ryan A Apathy
  6. Theodore L Roth
  7. Franziska Blaeschke
  8. Marek Kudla
  9. Alexander Marson
  10. Nicholas T Ingolia
  11. Jamie HD Cate  Is a corresponding author
  1. University of California, Berkeley, United States
  2. University of California, San Francisco, United States
  3. Gladstone-UCSF Institute of Genomic Immunology, United States

Abstract

Activation of T cells requires a rapid surge in cellular protein synthesis. However, the role of translation initiation in the early induction of specific genes remains unclear. Here we show human translation initiation factor eIF3 interacts with select immune system related mRNAs including those encoding the T cell receptor (TCR) subunits TCRA and TCRB. Binding of eIF3 to the TCRA and TCRB mRNA 3'-untranslated regions (3'-UTRs) depends on CD28 coreceptor signaling and regulates a burst in TCR translation required for robust T cell activation. Use of the TCRA or TCRB 3'-UTRs to control expression of an anti-CD19 chimeric antigen receptor (CAR) improves the ability of CAR-T cells to kill tumor cells in vitro. These results identify a new mechanism of eIF3-mediated translation control that can aid T cell engineering for immunotherapy applications.

Data availability

Sequencing data has been deposited in GEO (GSE191306).Code used to analyze the microscopy images is available on github at https://github.com/Llamero/TCR_colocalization_analysis-macro

The following data sets were generated

Article and author information

Author details

  1. Dasmanthie DeSilva

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    Dasmanthie DeSilva, A provisional patent application has been filed on some of the work presented herein..
  2. Lucas Ferguson

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  3. Grant H Chin

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  4. Benjamin E Smith

    School of Optometry, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  5. Ryan A Apathy

    Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  6. Theodore L Roth

    Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
    Competing interests
    Theodore L Roth, is a co-founder of Arsenal Therapeutics..
  7. Franziska Blaeschke

    Gladstone-UCSF Institute of Genomic Immunology, San Francisco, United States
    Competing interests
    No competing interests declared.
  8. Marek Kudla

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  9. Alexander Marson

    Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
    Competing interests
    Alexander Marson, is a compensated co-founder, member of the boards of directors, and a member of the scientific advisory boards of Spotlight Therapeutics and Arsenal Biosciences. Was a compensated member of the scientific advisory board at PACT Pharma and was a compensated advisor to Juno Therapeutics. Owns stock in Arsenal Biosciences, Spotlight Therapeutics, PACT Pharma and Merck. A.M. has received fees from Vertex, Merck, Amgen, Trizell, Genentech, AlphaSights, Rupert Case Management and Bernstein. Is an investor in and informal advisor to Offline Ventures. The Marson lab has received research support from Juno Therapeutics, Epinomics, Sanofi, GlaxoSmithKline, Gilead, and Anthem..
  10. Nicholas T Ingolia

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3395-1545
  11. Jamie HD Cate

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    j-h-doudna-cate@berkeley.edu
    Competing interests
    Jamie HD Cate, A provisional patent application has been filed on some of the work presented herein..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5965-7902

Funding

National Institutes of Health (R01-GM065050)

  • Dasmanthie DeSilva
  • Grant H Chin
  • Jamie HD Cate

Cancer Research Institute (N/A)

  • Alexander Marson

Chan Zuckerberg Initiative (N/A)

  • Ryan A Apathy
  • Theodore L Roth
  • Alexander Marson

Innovative Genomics Institute (N/A)

  • Ryan A Apathy
  • Theodore L Roth
  • Alexander Marson

Parker Institute for Cancer Immunotherapy (N/A)

  • Alexander Marson

Tang Prize for Biopharmaceutical Science (N/A)

  • Jamie HD Cate

Damon Runyon Cancer Research Foundation (DRR#37-15)

  • Nicholas T Ingolia

National Institutes of Health (DP2 CA195768)

  • Lucas Ferguson
  • Marek Kudla
  • Nicholas T Ingolia

National Institutes of Health (P30EY003176)

  • Benjamin E Smith

National Institutes of Health (S10 OD018174)

  • Dasmanthie DeSilva

Care-for-Rare Foundation (N/A)

  • Franziska Blaeschke

German Research Foundation (N/A)

  • Franziska Blaeschke

Burroughs Wellcome Fund (N/A)

  • Alexander Marson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bernard Malissen, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, France

Version history

  1. Received: September 28, 2021
  2. Preprint posted: October 4, 2021 (view preprint)
  3. Accepted: December 30, 2021
  4. Accepted Manuscript published: December 31, 2021 (version 1)
  5. Version of Record published: January 13, 2022 (version 2)

Copyright

© 2021, DeSilva et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,832
    views
  • 549
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dasmanthie DeSilva
  2. Lucas Ferguson
  3. Grant H Chin
  4. Benjamin E Smith
  5. Ryan A Apathy
  6. Theodore L Roth
  7. Franziska Blaeschke
  8. Marek Kudla
  9. Alexander Marson
  10. Nicholas T Ingolia
  11. Jamie HD Cate
(2021)
Robust T cell activation requires an eIF3-driven burst in T cell receptor translation
eLife 10:e74272.
https://doi.org/10.7554/eLife.74272

Share this article

https://doi.org/10.7554/eLife.74272

Further reading

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Rajdeep Banerjee, Thomas J Meyer ... David D Roberts
    Research Article

    Extramedullary erythropoiesis is not expected in healthy adult mice, but erythropoietic gene expression was elevated in lineage-depleted spleen cells from Cd47−/− mice. Expression of several genes associated with early stages of erythropoiesis was elevated in mice lacking CD47 or its signaling ligand thrombospondin-1, consistent with previous evidence that this signaling pathway inhibits expression of multipotent stem cell transcription factors in spleen. In contrast, cells expressing markers of committed erythroid progenitors were more abundant in Cd47−/− spleens but significantly depleted in Thbs1−/− spleens. Single-cell transcriptome and flow cytometry analyses indicated that loss of CD47 is associated with accumulation and increased proliferation in spleen of Ter119CD34+ progenitors and Ter119+CD34 committed erythroid progenitors with elevated mRNA expression of Kit, Ermap, and Tfrc. Induction of committed erythroid precursors is consistent with the known function of CD47 to limit the phagocytic removal of aged erythrocytes. Conversely, loss of thrombospondin-1 delays the turnover of aged red blood cells, which may account for the suppression of committed erythroid precursors in Thbs1−/− spleens relative to basal levels in wild-type mice. In addition to defining a role for CD47 to limit extramedullary erythropoiesis, these studies reveal a thrombospondin-1-dependent basal level of extramedullary erythropoiesis in adult mouse spleen.

    1. Cell Biology
    Makiko Kashio, Sandra Derouiche ... Makoto Tominaga
    Research Article

    Reports indicate that an interaction between TRPV4 and anoctamin 1 (ANO1) could be widely involved in water efflux of exocrine glands, suggesting that the interaction could play a role in perspiration. In secretory cells of sweat glands present in mouse foot pads, TRPV4 clearly colocalized with cytokeratin 8, ANO1, and aquaporin-5 (AQP5). Mouse sweat glands showed TRPV4-dependent cytosolic Ca2+ increases that were inhibited by menthol. Acetylcholine-stimulated sweating in foot pads was temperature-dependent in wild-type, but not in TRPV4-deficient mice and was inhibited by menthol both in wild-type and TRPM8KO mice. The basal sweating without acetylcholine stimulation was inhibited by an ANO1 inhibitor. Sweating could be important for maintaining friction forces in mouse foot pads, and this possibility is supported by the finding that wild-type mice climbed up a slippery slope more easily than TRPV4-deficient mice. Furthermore, TRPV4 expression was significantly higher in controls and normohidrotic skin from patients with acquired idiopathic generalized anhidrosis (AIGA) compared to anhidrotic skin from patients with AIGA. Collectively, TRPV4 is likely involved in temperature-dependent perspiration via interactions with ANO1, and TRPV4 itself or the TRPV4/ANO 1 complex would be targeted to develop agents that regulate perspiration.