Molecular features underlying differential SHP1/SHP2 binding of immune checkpoint receptors

  1. Xiaozheng Xu
  2. Takeya Masubuchi
  3. Qixu Cai
  4. Yunlong Zhao
  5. Enfu Hui  Is a corresponding author
  1. University of California San Diego, United States
  2. Hong Kong University of Science and Technology, China

Abstract

A large number of inhibitory receptors recruit SHP1 and/or SHP2, tandem-SH2-containing phosphatases, through phosphotyrosine-based motifs ITIM and ITSM. Despite the similarity, these receptors exhibit differential effector binding specificities, as exemplified by the immune checkpoint receptors PD-1 and BTLA, which preferentially recruit SHP2 and SHP1 respectively. The molecular basis by which structurally similar receptors discriminate SHP1 and SHP2 is unclear. Here, we provide evidence that human PD-1 and BTLA optimally bind to SHP1 and SHP2 via a bivalent, parallel mode that involves both SH2 domains of SHP1 or SHP2. PD-1 mainly uses its ITSM to prefer SHP2 over SHP1 via their C-terminal SH2 domains (cSH2): swapping SHP1-cSH2 with SHP2-cSH2 enabled PD-1:SHP1 association in T cells. In contrast, BTLA primarily utilizes its ITIM to prefer SHP1 over SHP2 via their N-terminal SH2 domains (nSH2). The ITIM of PD-1, however, appeared to be de-emphasized due to a glycine at pY+1 position. Substitution of this glycine with alanine, a residue conserved in BTLA and several SHP1-recruiting receptors, was sufficient to induce PD-1:SHP1 interaction in T cells. Finally, structural simulation and mutagenesis screening showed that SHP1 recruitment activity exhibits a bell-shaped dependence on the side chain volume of the pY+1 residue of ITIM. Collectively, we provide a molecular interpretation of the SHP1/SHP2-binding specificities of PD-1 and BTLA, with implications for the mechanisms of a large family of therapeutically relevant receptors.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file

Article and author information

Author details

  1. Xiaozheng Xu

    University of California San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6888-4285
  2. Takeya Masubuchi

    University of California San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  3. Qixu Cai

    Hong Kong University of Science and Technology, Hong Kong, China
    Competing interests
    Qixu Cai, QC conducted the structural modeling and simulations.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4525-4261
  4. Yunlong Zhao

    University of California San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  5. Enfu Hui

    University of California San Diego, La Jolla, United States
    For correspondence
    enfuhui@ucsd.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7876-2783

Funding

National Cancer Institute (R37 CA239072-03)

  • Enfu Hui

Pew Charitable Trusts

  • Enfu Hui

Searle Scholars Program

  • Enfu Hui

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Yuting Ma, Suzhou Institute of Systems Medicine, China

Version history

  1. Received: September 29, 2021
  2. Accepted: October 16, 2021
  3. Accepted Manuscript published: November 4, 2021 (version 1)
  4. Version of Record published: November 30, 2021 (version 2)

Copyright

© 2021, Xu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,877
    views
  • 625
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiaozheng Xu
  2. Takeya Masubuchi
  3. Qixu Cai
  4. Yunlong Zhao
  5. Enfu Hui
(2021)
Molecular features underlying differential SHP1/SHP2 binding of immune checkpoint receptors
eLife 10:e74276.
https://doi.org/10.7554/eLife.74276

Share this article

https://doi.org/10.7554/eLife.74276

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.