Stability of motor representations after paralysis

  1. Charles Guan  Is a corresponding author
  2. Tyson Aflalo  Is a corresponding author
  3. Carey Y Zhang
  4. Elena Amoruso
  5. Emily R Rosario
  6. Nader Pouratian
  7. Richard A Andersen
  1. California Institute of Technology, United States
  2. University College London, United Kingdom
  3. Casa Colina Hospital and Centers for Healthcare, United States
  4. University of California, Los Angeles, United States

Abstract

Neural plasticity allows us to learn skills and incorporate new experiences. What happens when our lived experiences fundamentally change, such as after a severe injury? To address this question, we analyzed intracortical population activity in the posterior parietal cortex (PPC) of a tetraplegic adult as she controlled a virtual hand through a brain-computer interface (BCI). By attempting to move her fingers, she could accurately drive the corresponding virtual fingers. Neural activity during finger movements exhibited robust representational structure similar to fMRI recordings of able-bodied individuals' motor cortex, which has previously been shown to reflect able-bodied usage patterns. The finger representational structure was consistent throughout multiple sessions, even though the structure contributed to BCI decoding errors. Within individual BCI movements, the representational structure was dynamic, first resembling muscle activation patterns and then resembling the anticipated sensory consequences. Our results reveal that motor representations in PPC reflect able-bodied motor usage patterns even after paralysis, and BCIs can re-engage these representations to restore lost motor functions.

Data availability

Data is available on the BRAIN Initiative DANDI Archive at https://dandiarchive.org/dandiset/000147

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Charles Guan

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    For correspondence
    cguan@caltech.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Tyson Aflalo

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    For correspondence
    taflalo@caltech.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0101-2455
  3. Carey Y Zhang

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Elena Amoruso

    Institute of Cognitive Neuroscience, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Emily R Rosario

    Casa Colina Hospital and Centers for Healthcare, Pomona, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nader Pouratian

    5David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Richard A Andersen

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Eye Institute (R01EY015545)

  • Charles Guan
  • Tyson Aflalo
  • Emily R Rosario
  • Nader Pouratian
  • Richard A Andersen

National Eye Institute (UG1EY032039)

  • Charles Guan
  • Tyson Aflalo
  • Emily R Rosario
  • Nader Pouratian
  • Richard A Andersen

Tianqiao and Chrissy Chen Brain-machine Interface Center at Caltech

  • Tyson Aflalo
  • Richard A Andersen

Boswell Foundation

  • Richard A Andersen

Amazon AI4Science Fellowship

  • Charles Guan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jörn Diedrichsen, Western University, Canada

Ethics

Human subjects: All procedures were approved by the California Institute of Technology, Casa Colina Hospital and Centers for Healthcare, and the University of California, Los Angeles Institutional Review Boards. NS consented to the surgical procedure as well as to the subsequent clinical studies after understanding their nature, objectives, and potential risks.

Version history

  1. Received: October 6, 2021
  2. Preprint posted: October 9, 2021 (view preprint)
  3. Accepted: August 27, 2022
  4. Accepted Manuscript published: September 20, 2022 (version 1)
  5. Version of Record published: October 12, 2022 (version 2)

Copyright

© 2022, Guan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,405
    views
  • 294
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Charles Guan
  2. Tyson Aflalo
  3. Carey Y Zhang
  4. Elena Amoruso
  5. Emily R Rosario
  6. Nader Pouratian
  7. Richard A Andersen
(2022)
Stability of motor representations after paralysis
eLife 11:e74478.
https://doi.org/10.7554/eLife.74478

Share this article

https://doi.org/10.7554/eLife.74478

Further reading

    1. Neuroscience
    Alexandra H Leighton, Juliette E Cheyne, Christian Lohmann
    Research Article

    Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.

    1. Neuroscience
    Augustine Xiaoran Yuan, Jennifer Colonell ... Timothy D Harris
    Tools and Resources

    Accurate tracking of the same neurons across multiple days is crucial for studying changes in neuronal activity during learning and adaptation. Advances in high-density extracellular electrophysiology recording probes, such as Neuropixels, provide a promising avenue to accomplish this goal. Identifying the same neurons in multiple recordings is, however, complicated by non-rigid movement of the tissue relative to the recording sites (drift) and loss of signal from some neurons. Here, we propose a neuron tracking method that can identify the same cells independent of firing statistics, that are used by most existing methods. Our method is based on between-day non-rigid alignment of spike-sorted clusters. We verified the same cell identity in mice using measured visual receptive fields. This method succeeds on datasets separated from 1 to 47 days, with an 84% average recovery rate.