Stability of motor representations after paralysis

  1. Charles Guan  Is a corresponding author
  2. Tyson Aflalo  Is a corresponding author
  3. Carey Y Zhang
  4. Elena Amoruso
  5. Emily R Rosario
  6. Nader Pouratian
  7. Richard A Andersen
  1. California Institute of Technology, United States
  2. University College London, United Kingdom
  3. Casa Colina Hospital and Centers for Healthcare, United States
  4. University of California, Los Angeles, United States

Abstract

Neural plasticity allows us to learn skills and incorporate new experiences. What happens when our lived experiences fundamentally change, such as after a severe injury? To address this question, we analyzed intracortical population activity in the posterior parietal cortex (PPC) of a tetraplegic adult as she controlled a virtual hand through a brain-computer interface (BCI). By attempting to move her fingers, she could accurately drive the corresponding virtual fingers. Neural activity during finger movements exhibited robust representational structure similar to fMRI recordings of able-bodied individuals' motor cortex, which has previously been shown to reflect able-bodied usage patterns. The finger representational structure was consistent throughout multiple sessions, even though the structure contributed to BCI decoding errors. Within individual BCI movements, the representational structure was dynamic, first resembling muscle activation patterns and then resembling the anticipated sensory consequences. Our results reveal that motor representations in PPC reflect able-bodied motor usage patterns even after paralysis, and BCIs can re-engage these representations to restore lost motor functions.

Data availability

Data is available on the BRAIN Initiative DANDI Archive at https://dandiarchive.org/dandiset/000147

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Charles Guan

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    For correspondence
    cguan@caltech.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Tyson Aflalo

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    For correspondence
    taflalo@caltech.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0101-2455
  3. Carey Y Zhang

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Elena Amoruso

    Institute of Cognitive Neuroscience, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Emily R Rosario

    Casa Colina Hospital and Centers for Healthcare, Pomona, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nader Pouratian

    5David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Richard A Andersen

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Eye Institute (R01EY015545)

  • Charles Guan
  • Tyson Aflalo
  • Emily R Rosario
  • Nader Pouratian
  • Richard A Andersen

National Eye Institute (UG1EY032039)

  • Charles Guan
  • Tyson Aflalo
  • Emily R Rosario
  • Nader Pouratian
  • Richard A Andersen

Tianqiao and Chrissy Chen Brain-machine Interface Center at Caltech

  • Tyson Aflalo
  • Richard A Andersen

Boswell Foundation

  • Richard A Andersen

Amazon AI4Science Fellowship

  • Charles Guan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All procedures were approved by the California Institute of Technology, Casa Colina Hospital and Centers for Healthcare, and the University of California, Los Angeles Institutional Review Boards. NS consented to the surgical procedure as well as to the subsequent clinical studies after understanding their nature, objectives, and potential risks.

Copyright

© 2022, Guan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,558
    views
  • 326
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Charles Guan
  2. Tyson Aflalo
  3. Carey Y Zhang
  4. Elena Amoruso
  5. Emily R Rosario
  6. Nader Pouratian
  7. Richard A Andersen
(2022)
Stability of motor representations after paralysis
eLife 11:e74478.
https://doi.org/10.7554/eLife.74478

Share this article

https://doi.org/10.7554/eLife.74478

Further reading

    1. Neuroscience
    Sara Jamali, Sophie Bagur ... Brice Bathellier
    Research Article

    The brain predicts regularities in sensory inputs at multiple complexity levels, with neuronal mechanisms that remain elusive. Here, we monitored auditory cortex activity during the local-global paradigm, a protocol nesting different regularity levels in sound sequences. We observed that mice encode local predictions based on stimulus occurrence and stimulus transition probabilities, because auditory responses are boosted upon prediction violation. This boosting was due to both short-term adaptation and an adaptation-independent surprise mechanism resisting anesthesia. In parallel, and only in wakefulness, VIP interneurons responded to the omission of the locally expected sound repeat at the sequence ending, thus providing a chunking signal potentially useful for establishing global sequence structure. When this global structure was violated, by either shortening the sequence or ending it with a locally expected but globally unexpected sound transition, activity slightly increased in VIP and PV neurons, respectively. Hence, distinct cellular mechanisms predict different regularity levels in sound sequences.

    1. Neuroscience
    Marleen Haupt, Monika Graumann ... Radoslaw Cichy
    Research Article

    Experience-based plasticity of the human cortex mediates the influence of individual experience on cognition and behavior. The complete loss of a sensory modality is among the most extreme such experiences. Investigating such a selective, yet extreme change in experience allows for the characterization of experience-based plasticity at its boundaries. Here, we investigated information processing in individuals who lost vision at birth or early in life by probing the processing of braille letter information. We characterized the transformation of braille letter information from sensory representations depending on the reading hand to perceptual representations that are independent of the reading hand. Using a multivariate analysis framework in combination with functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and behavioral assessment, we tracked cortical braille representations in space and time, and probed their behavioral relevance. We located sensory representations in tactile processing areas and perceptual representations in sighted reading areas, with the lateral occipital complex as a connecting ‘hinge’ region. This elucidates the plasticity of the visually deprived brain in terms of information processing. Regarding information processing in time, we found that sensory representations emerge before perceptual representations. This indicates that even extreme cases of brain plasticity adhere to a common temporal scheme in the progression from sensory to perceptual transformations. Ascertaining behavioral relevance through perceived similarity ratings, we found that perceptual representations in sighted reading areas, but not sensory representations in tactile processing areas are suitably formatted to guide behavior. Together, our results reveal a nuanced picture of both the potentials and limits of experience-dependent plasticity in the visually deprived brain.