Stability of motor representations after paralysis

  1. Charles Guan  Is a corresponding author
  2. Tyson Aflalo  Is a corresponding author
  3. Carey Y Zhang
  4. Elena Amoruso
  5. Emily R Rosario
  6. Nader Pouratian
  7. Richard A Andersen
  1. California Institute of Technology, United States
  2. University College London, United Kingdom
  3. Casa Colina Hospital and Centers for Healthcare, United States
  4. University of California, Los Angeles, United States

Abstract

Neural plasticity allows us to learn skills and incorporate new experiences. What happens when our lived experiences fundamentally change, such as after a severe injury? To address this question, we analyzed intracortical population activity in the posterior parietal cortex (PPC) of a tetraplegic adult as she controlled a virtual hand through a brain-computer interface (BCI). By attempting to move her fingers, she could accurately drive the corresponding virtual fingers. Neural activity during finger movements exhibited robust representational structure similar to fMRI recordings of able-bodied individuals' motor cortex, which has previously been shown to reflect able-bodied usage patterns. The finger representational structure was consistent throughout multiple sessions, even though the structure contributed to BCI decoding errors. Within individual BCI movements, the representational structure was dynamic, first resembling muscle activation patterns and then resembling the anticipated sensory consequences. Our results reveal that motor representations in PPC reflect able-bodied motor usage patterns even after paralysis, and BCIs can re-engage these representations to restore lost motor functions.

Data availability

Data is available on the BRAIN Initiative DANDI Archive at https://dandiarchive.org/dandiset/000147

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Charles Guan

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    For correspondence
    cguan@caltech.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Tyson Aflalo

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    For correspondence
    taflalo@caltech.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0101-2455
  3. Carey Y Zhang

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Elena Amoruso

    Institute of Cognitive Neuroscience, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Emily R Rosario

    Casa Colina Hospital and Centers for Healthcare, Pomona, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nader Pouratian

    5David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Richard A Andersen

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Eye Institute (R01EY015545)

  • Charles Guan
  • Tyson Aflalo
  • Emily R Rosario
  • Nader Pouratian
  • Richard A Andersen

National Eye Institute (UG1EY032039)

  • Charles Guan
  • Tyson Aflalo
  • Emily R Rosario
  • Nader Pouratian
  • Richard A Andersen

Tianqiao and Chrissy Chen Brain-machine Interface Center at Caltech

  • Tyson Aflalo
  • Richard A Andersen

Boswell Foundation

  • Richard A Andersen

Amazon AI4Science Fellowship

  • Charles Guan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All procedures were approved by the California Institute of Technology, Casa Colina Hospital and Centers for Healthcare, and the University of California, Los Angeles Institutional Review Boards. NS consented to the surgical procedure as well as to the subsequent clinical studies after understanding their nature, objectives, and potential risks.

Reviewing Editor

  1. Jörn Diedrichsen, Western University, Canada

Publication history

  1. Received: October 6, 2021
  2. Accepted: August 27, 2022
  3. Accepted Manuscript published: September 20, 2022 (version 1)

Copyright

© 2022, Guan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 194
    Page views
  • 114
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Charles Guan
  2. Tyson Aflalo
  3. Carey Y Zhang
  4. Elena Amoruso
  5. Emily R Rosario
  6. Nader Pouratian
  7. Richard A Andersen
(2022)
Stability of motor representations after paralysis
eLife 11:e74478.
https://doi.org/10.7554/eLife.74478

Further reading

    1. Neuroscience
    Alison R Weiss, William A Liguore ... Jodi L McBride
    Research Article

    We created a new nonhuman primate model of the genetic neurodegenerative disorder Huntington’s disease (HD) by injecting a mixture of recombinant adeno-associated viral vectors, serotypes AAV2 and AAV2.retro, each expressing a fragment of human mutant HTT (mHTT) into the caudate and putamen of adult rhesus macaques. This modeling strategy results in expression of mutant huntingtin protein (mHTT) and aggregate formation in the injected brain regions, as well as dozens of other cortical and subcortical brain regions affected in human HD patients. We queried the disruption of cortico-basal ganglia circuitry for 30 months post-surgery using a variety of behavioral and imaging readouts. Compared to controls, mHTT-treated macaques developed working memory decline and progressive motor impairment. Multimodal imaging revealed circuit-wide white and gray matter degenerative processes in several key brain regions affected in HD. Taken together, we have developed a novel macaque model of HD that may be used to develop disease biomarkers and screen promising therapeutics.

    1. Neuroscience
    Ariane C Boehm, Anja B Friedrich ... Ilona C Grunwald Kadow
    Research Article Updated

    Motherhood induces a drastic, sometimes long-lasting, change in internal state and behavior in many female animals. How a change in reproductive state or the discrete event of mating modulates specific female behaviors is still incompletely understood. Using calcium imaging of the whole brain of Drosophila females, we find that mating does not induce a global change in brain activity. Instead, mating modulates the pheromone response of dopaminergic neurons innervating the fly’s learning and memory center, the mushroom body (MB). Using the mating-induced increased attraction to the odor of important nutrients, polyamines, we show that disruption of the female fly’s ability to smell, for instance the pheromone cVA, during mating leads to a reduction in polyamine preference for days later indicating that the odor environment at mating lastingly influences female perception and choice behavior. Moreover, dopaminergic neurons including innervation of the β’1 compartment are sufficient to induce the lasting behavioral increase in polyamine preference. We further show that MB output neurons (MBON) of the β’1 compartment are activated by pheromone odor and their activity during mating bidirectionally modulates preference behavior in mated and virgin females. Their activity is not required, however, for the expression of polyamine attraction. Instead, inhibition of another type of MBON innervating the β’2 compartment enables expression of high odor attraction. In addition, the response of a lateral horn (LH) neuron, AD1b2, which output is required for the expression of polyamine attraction, shows a modulated polyamine response after mating. Taken together, our data in the fly suggests that mating-related sensory experience regulates female odor perception and expression of choice behavior through a dopamine-gated learning circuit.