Modular, robust and extendible multicellular circuit design in yeast

  1. Alberto Carignano
  2. Dai Hua Chen
  3. Cannon Mallory
  4. Clay R Wright
  5. Georg Seelig  Is a corresponding author
  6. Eric Klavins  Is a corresponding author
  1. University of Washington, United States
  2. Virginia Tech, United States

Abstract

Division of labor between cells is ubiquitous in biology but the use of multi-cellular consortia for engineering applications is only beginning to be explored. A significant advantage of multi-cellular circuits is their potential to be modular with respect to composition but this claim has not yet been extensively tested using experiments and quantitative modeling. Here, we construct a library of 24 yeast strains capable of sending, receiving or responding to three molecular signals, characterize them experimentally and build quantitative models of their input-output relationships. We then compose these strains into two- and three-strain cascades as well as a four-strain bistable switch and show that experimentally measured consortia dynamics can be predicted from the models of the constituent parts. To further explore the achievable range of behaviors, we perform a fully automated computational search over all two-, three- and four-strain consortia to identify combinations that realize target behaviors including logic gates, band-pass filters and time pulses. Strain combinations that are predicted to map onto a target behavior are further computationally optimized and then experimentally tested. Experiments closely track computational predictions. The high reliability of these model descriptions further strengthens the feasibility and highlights the potential for distributed computing in synthetic biology.

Data availability

Figure 1 - Source Data 1, Figure 2 - Source Data 1, Figure 3 - Source Data 1, Figure 4 - Source Data 1, Figure 5 - Source Data 1 contain the numerical data used to generate the figures

Article and author information

Author details

  1. Alberto Carignano

    Department of Electrical and Computer Engineering, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3306-9365
  2. Dai Hua Chen

    Department of Electrical and Computer Engineering, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Cannon Mallory

    Department of Electrical and Computer Engineering, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Clay R Wright

    Department of Biological Systems Engineering, Virginia Tech, Blacksburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Georg Seelig

    Department of Electrical and Computer Engineering, University of Washington, Seattle, United States
    For correspondence
    gseelig@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3163-8782
  6. Eric Klavins

    Department of Electrical and Computer Engineering, University of Washington, Seattle, United States
    For correspondence
    klavins@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3805-5117

Funding

Office of Naval Research (N00014-16-1-3189)

  • Alberto Carignano
  • Georg Seelig
  • Eric Klavins

National Science Foundation (1807132)

  • Alberto Carignano
  • Eric Klavins

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Xiaojun Tian

Publication history

  1. Received: October 8, 2021
  2. Preprint posted: October 14, 2021 (view preprint)
  3. Accepted: March 20, 2022
  4. Accepted Manuscript published: March 21, 2022 (version 1)
  5. Accepted Manuscript updated: March 22, 2022 (version 2)
  6. Version of Record published: April 11, 2022 (version 3)

Copyright

© 2022, Carignano et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,043
    Page views
  • 230
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alberto Carignano
  2. Dai Hua Chen
  3. Cannon Mallory
  4. Clay R Wright
  5. Georg Seelig
  6. Eric Klavins
(2022)
Modular, robust and extendible multicellular circuit design in yeast
eLife 11:e74540.
https://doi.org/10.7554/eLife.74540

Further reading

    1. Computational and Systems Biology
    Jeffrey Molendijk, Ronnie Blazev ... Benjamin L Parker
    Research Article

    Improving muscle function has great potential to improve the quality of life. To identify novel regulators of skeletal muscle metabolism and function, we performed a proteomic analysis of gastrocnemius muscle from 73 genetically distinct inbred mouse strains, and integrated the data with previously acquired genomics and >300 molecular/phenotypic traits via quantitative trait loci mapping and correlation network analysis. These data identified thousands of associations between protein abundance and phenotypes and can be accessed online (https://muscle.coffeeprot.com/) to identify regulators of muscle function. We used this resource to prioritize targets for a functional genomic screen in human bioengineered skeletal muscle. This identified several negative regulators of muscle function including UFC1, an E2 ligase for protein UFMylation. We show UFMylation is up-regulated in a mouse model of amyotrophic lateral sclerosis, a disease that involves muscle atrophy. Furthermore, in vivo knockdown of UFMylation increased contraction force, implicating its role as a negative regulator of skeletal muscle function.

    1. Computational and Systems Biology
    Shunpei Yamauchi, Takashi Nozoe ... Yuichi Wakamoto
    Research Article

    Intracellular states probed by gene expression profiles and metabolic activities are intrinsically noisy, causing phenotypic variations among cellular lineages. Understanding the adaptive and evolutionary roles of such variations requires clarifying their linkage to population growth rates. Extending a cell lineage statistics framework, here we show that a population’s growth rate can be expanded by the cumulants of a fitness landscape that characterize how fitness distributes in a population. The expansion enables quantifying the contribution of each cumulant, such as variance and skewness, to population growth. We introduce a function that contains all the essential information of cell lineage statistics, including mean lineage fitness and selection strength. We reveal a relation between fitness heterogeneity and population growth rate response to perturbation. We apply the framework to experimental cell lineage data from bacteria to mammalian cells, revealing distinct levels of growth rate gain from fitness heterogeneity across environments and organisms. Furthermore, third or higher order cumulants’ contributions are negligible under constant growth conditions but could be significant in regrowing processes from growth-arrested conditions. We identify cellular populations in which selection leads to an increase of fitness variance among lineages in retrospective statistics compared to chronological statistics. The framework assumes no particular growth models or environmental conditions, and is thus applicable to various biological phenomena for which phenotypic heterogeneity and cellular proliferation are important.