Modular, robust and extendible multicellular circuit design in yeast

  1. Alberto Carignano
  2. Dai Hua Chen
  3. Cannon Mallory
  4. Clay R Wright
  5. Georg Seelig  Is a corresponding author
  6. Eric Klavins  Is a corresponding author
  1. University of Washington, United States
  2. Virginia Tech, United States

Abstract

Division of labor between cells is ubiquitous in biology but the use of multi-cellular consortia for engineering applications is only beginning to be explored. A significant advantage of multi-cellular circuits is their potential to be modular with respect to composition but this claim has not yet been extensively tested using experiments and quantitative modeling. Here, we construct a library of 24 yeast strains capable of sending, receiving or responding to three molecular signals, characterize them experimentally and build quantitative models of their input-output relationships. We then compose these strains into two- and three-strain cascades as well as a four-strain bistable switch and show that experimentally measured consortia dynamics can be predicted from the models of the constituent parts. To further explore the achievable range of behaviors, we perform a fully automated computational search over all two-, three- and four-strain consortia to identify combinations that realize target behaviors including logic gates, band-pass filters and time pulses. Strain combinations that are predicted to map onto a target behavior are further computationally optimized and then experimentally tested. Experiments closely track computational predictions. The high reliability of these model descriptions further strengthens the feasibility and highlights the potential for distributed computing in synthetic biology.

Data availability

Figure 1 - Source Data 1, Figure 2 - Source Data 1, Figure 3 - Source Data 1, Figure 4 - Source Data 1, Figure 5 - Source Data 1 contain the numerical data used to generate the figures

Article and author information

Author details

  1. Alberto Carignano

    Department of Electrical and Computer Engineering, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3306-9365
  2. Dai Hua Chen

    Department of Electrical and Computer Engineering, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Cannon Mallory

    Department of Electrical and Computer Engineering, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Clay R Wright

    Department of Biological Systems Engineering, Virginia Tech, Blacksburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Georg Seelig

    Department of Electrical and Computer Engineering, University of Washington, Seattle, United States
    For correspondence
    gseelig@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3163-8782
  6. Eric Klavins

    Department of Electrical and Computer Engineering, University of Washington, Seattle, United States
    For correspondence
    klavins@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3805-5117

Funding

Office of Naval Research (N00014-16-1-3189)

  • Alberto Carignano
  • Georg Seelig
  • Eric Klavins

National Science Foundation (1807132)

  • Alberto Carignano
  • Eric Klavins

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Xiaojun Tian

Publication history

  1. Received: October 8, 2021
  2. Preprint posted: October 14, 2021 (view preprint)
  3. Accepted: March 20, 2022
  4. Accepted Manuscript published: March 21, 2022 (version 1)
  5. Accepted Manuscript updated: March 22, 2022 (version 2)
  6. Version of Record published: April 11, 2022 (version 3)

Copyright

© 2022, Carignano et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 804
    Page views
  • 175
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alberto Carignano
  2. Dai Hua Chen
  3. Cannon Mallory
  4. Clay R Wright
  5. Georg Seelig
  6. Eric Klavins
(2022)
Modular, robust and extendible multicellular circuit design in yeast
eLife 11:e74540.
https://doi.org/10.7554/eLife.74540

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Jayashree Kumar et al.
    Research Article Updated

    Splicing is highly regulated and is modulated by numerous factors. Quantitative predictions for how a mutation will affect precursor mRNA (pre-mRNA) structure and downstream function are particularly challenging. Here, we use a novel chemical probing strategy to visualize endogenous precursor and mature MAPT mRNA structures in cells. We used these data to estimate Boltzmann suboptimal structural ensembles, which were then analyzed to predict consequences of mutations on pre-mRNA structure. Further analysis of recent cryo-EM structures of the spliceosome at different stages of the splicing cycle revealed that the footprint of the Bact complex with pre-mRNA best predicted alternative splicing outcomes for exon 10 inclusion of the alternatively spliced MAPT gene, achieving 74% accuracy. We further developed a β-regression weighting framework that incorporates splice site strength, RNA structure, and exonic/intronic splicing regulatory elements capable of predicting, with 90% accuracy, the effects of 47 known and 6 newly discovered mutations on inclusion of exon 10 of MAPT. This combined experimental and computational framework represents a path forward for accurate prediction of splicing-related disease-causing variants.

    1. Computational and Systems Biology
    Mayank Baranwal et al.
    Research Article

    Predicting the dynamics and functions of microbiomes constructed from the bottom-up is a key challenge in exploiting them to our benefit. Current models based on ecological theory fail to capture complex community behaviors due to higher order interactions, do not scale well with increasing complexity and in considering multiple functions. We develop and apply a long short-term memory (LSTM) framework to advance our understanding of community assembly and health-relevant metabolite production using a synthetic human gut community. A mainstay of recurrent neural networks, the LSTM learns a high dimensional data-driven non-linear dynamical system model. We show that the LSTM model can outperform the widely used generalized Lotka-Volterra model based on ecological theory. We build methods to decipher microbe-microbe and microbe-metabolite interactions from an otherwise black-box model. These methods highlight that Actinobacteria, Firmicutes and Proteobacteria are significant drivers of metabolite production whereas Bacteroides shape community dynamics. We use the LSTM model to navigate a large multidimensional functional landscape to design communities with unique health-relevant metabolite profiles and temporal behaviors. In sum, the accuracy of the LSTM model can be exploited for experimental planning and to guide the design of synthetic microbiomes with target dynamic functions.