Modular, robust and extendible multicellular circuit design in yeast

  1. Alberto Carignano
  2. Dai Hua Chen
  3. Cannon Mallory
  4. R Clay Wright
  5. Georg Seelig  Is a corresponding author
  6. Eric Klavins  Is a corresponding author
  1. University of Washington, United States
  2. Virginia Tech, United States

Abstract

Division of labor between cells is ubiquitous in biology but the use of multi-cellular consortia for engineering applications is only beginning to be explored. A significant advantage of multi-cellular circuits is their potential to be modular with respect to composition but this claim has not yet been extensively tested using experiments and quantitative modeling. Here, we construct a library of 24 yeast strains capable of sending, receiving or responding to three molecular signals, characterize them experimentally and build quantitative models of their input-output relationships. We then compose these strains into two- and three-strain cascades as well as a four-strain bistable switch and show that experimentally measured consortia dynamics can be predicted from the models of the constituent parts. To further explore the achievable range of behaviors, we perform a fully automated computational search over all two-, three- and four-strain consortia to identify combinations that realize target behaviors including logic gates, band-pass filters and time pulses. Strain combinations that are predicted to map onto a target behavior are further computationally optimized and then experimentally tested. Experiments closely track computational predictions. The high reliability of these model descriptions further strengthens the feasibility and highlights the potential for distributed computing in synthetic biology.

Data availability

Figure 1 - Source Data 1, Figure 2 - Source Data 1, Figure 3 - Source Data 1, Figure 4 - Source Data 1, Figure 5 - Source Data 1 contain the numerical data used to generate the figures

Article and author information

Author details

  1. Alberto Carignano

    Department of Electrical and Computer Engineering, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3306-9365
  2. Dai Hua Chen

    Department of Electrical and Computer Engineering, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Cannon Mallory

    Department of Electrical and Computer Engineering, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. R Clay Wright

    Virginia Tech, Blacksburg, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7125-3943
  5. Georg Seelig

    Department of Electrical and Computer Engineering, University of Washington, Seattle, United States
    For correspondence
    gseelig@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3163-8782
  6. Eric Klavins

    Department of Electrical and Computer Engineering, University of Washington, Seattle, United States
    For correspondence
    klavins@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3805-5117

Funding

Office of Naval Research (N00014-16-1-3189)

  • Alberto Carignano
  • Georg Seelig
  • Eric Klavins

National Science Foundation (1807132)

  • Alberto Carignano
  • Eric Klavins

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Xiaojun Tian

Version history

  1. Received: October 8, 2021
  2. Preprint posted: October 14, 2021 (view preprint)
  3. Accepted: March 20, 2022
  4. Accepted Manuscript published: March 21, 2022 (version 1)
  5. Accepted Manuscript updated: March 22, 2022 (version 2)
  6. Version of Record published: April 11, 2022 (version 3)

Copyright

© 2022, Carignano et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,648
    views
  • 287
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alberto Carignano
  2. Dai Hua Chen
  3. Cannon Mallory
  4. R Clay Wright
  5. Georg Seelig
  6. Eric Klavins
(2022)
Modular, robust and extendible multicellular circuit design in yeast
eLife 11:e74540.
https://doi.org/10.7554/eLife.74540

Share this article

https://doi.org/10.7554/eLife.74540

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Andrea I Luppi, Pedro AM Mediano ... Emmanuel A Stamatakis
    Research Article

    How is the information-processing architecture of the human brain organised, and how does its organisation support consciousness? Here, we combine network science and a rigorous information-theoretic notion of synergy to delineate a ‘synergistic global workspace’, comprising gateway regions that gather synergistic information from specialised modules across the human brain. This information is then integrated within the workspace and widely distributed via broadcaster regions. Through functional MRI analysis, we show that gateway regions of the synergistic workspace correspond to the human brain’s default mode network, whereas broadcasters coincide with the executive control network. We find that loss of consciousness due to general anaesthesia or disorders of consciousness corresponds to diminished ability of the synergistic workspace to integrate information, which is restored upon recovery. Thus, loss of consciousness coincides with a breakdown of information integration within the synergistic workspace of the human brain. This work contributes to conceptual and empirical reconciliation between two prominent scientific theories of consciousness, the Global Neuronal Workspace and Integrated Information Theory, while also advancing our understanding of how the human brain supports consciousness through the synergistic integration of information.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Ardalan Naseri, Degui Zhi, Shaojie Zhang
    Research Article Updated

    Runs-of-homozygosity (ROH) segments, contiguous homozygous regions in a genome were traditionally linked to families and inbred populations. However, a growing literature suggests that ROHs are ubiquitous in outbred populations. Still, most existing genetic studies of ROH in populations are limited to aggregated ROH content across the genome, which does not offer the resolution for mapping causal loci. This limitation is mainly due to a lack of methods for the efficient identification of shared ROH diplotypes. Here, we present a new method, ROH-DICE (runs-of-homozygous diplotype cluster enumerator), to find large ROH diplotype clusters, sufficiently long ROHs shared by a sufficient number of individuals, in large cohorts. ROH-DICE identified over 1 million ROH diplotypes that span over 100 single nucleotide polymorphisms (SNPs) and are shared by more than 100 UK Biobank participants. Moreover, we found significant associations of clustered ROH diplotypes across the genome with various self-reported diseases, with the strongest associations found between the extended human leukocyte antigen (HLA) region and autoimmune disorders. We found an association between a diplotype covering the homeostatic iron regulator (HFE) gene and hemochromatosis, even though the well-known causal SNP was not directly genotyped or imputed. Using a genome-wide scan, we identified a putative association between carriers of an ROH diplotype in chromosome 4 and an increase in mortality among COVID-19 patients (p-value = 1.82 × 10−11). In summary, our ROH-DICE method, by calling out large ROH diplotypes in a large outbred population, enables further population genetics into the demographic history of large populations. More importantly, our method enables a new genome-wide mapping approach for finding disease-causing loci with multi-marker recessive effects at a population scale.