Early lock-in of structured and specialised information flows during neural development

  1. David P Shorten  Is a corresponding author
  2. Viola Priesemann
  3. Michael Wibral
  4. Joseph T Lizier
  1. University of Sydney, Australia
  2. Max Planck Institute for Dynamics and Self-Organization, Germany
  3. Georg August University, Germany

Abstract

The brains of many organisms are capable of complicated distributed computation underpinned by a highly advanced information processing capacity. Although substantial progress has been made towards characterising the information flow component of this capacity in mature brains, there is a distinct lack of work characterising its emergence during neural development. This lack of progress has been largely driven by the lack of effective estimators of information processing operations for the spiking data available for developing neural networks. Here, we leverage recent advances in this estimation task in order to quantify the changes in transfer entropy during development. We do so by studying the changes in the intrinsic dynamics of the spontaneous activity of developing dissociated neural cell cultures. We find that the quantity of information flowing across these networks undergoes a dramatic increase across development. Moreover, the spatial structure of these flows exhibits a tendency to lock in at the point when they arise, after which there is a substantial temporal correlation in the information flows across recording days. We analyse the flow of information during the crucial periods of population bursts. We find that, during these bursts, nodes tend to undertake specialised computational roles as either transmitters, mediators or receivers of information, with these roles tending to align with their average spike ordering - either early, mid or late in the bursts. Further, we find that the specialised computational roles occupied by nodes during bursts are regularly locked-in when the information flows are established. Finally, we briefly compare these results to information flows in a model network developing according to an STDP learning rule from a state of independent firing to synchronous bursting. The phenomena of large increases in information flow, early lock-in of information flow spatial structure and computational roles based on burst position were also observed in this model, hinting at the broader generality of these phenomena.

Data availability

This work made use of a publicly available dataset which can be found at: http://neurodatasharing.bme.gatech.edu/development-data/html/index.htmlAnalysis scripts are available at: https://bitbucket.org/dpshorten/cell_cultures

The following previously published data sets were used

Article and author information

Author details

  1. David P Shorten

    Faculty of Engineering, University of Sydney, Sydney, Australia
    For correspondence
    david.shorten@sydney.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2412-4705
  2. Viola Priesemann

    MPRG Priesemann, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8905-5873
  3. Michael Wibral

    Campus Institute for Dynamics of Biological Networks, Georg August University, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Joseph T Lizier

    Faculty of Engineering, University of Sydney, The University of Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9910-8972

Funding

Australian Research Council (DE160100630)

  • Joseph T Lizier

University of Sydney (SOAR Fellowship)

  • Joseph T Lizier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Tatyana O Sharpee, Salk Institute for Biological Studies, United States

Version history

  1. Preprint posted: June 30, 2021 (view preprint)
  2. Received: October 12, 2021
  3. Accepted: March 13, 2022
  4. Accepted Manuscript published: March 14, 2022 (version 1)
  5. Version of Record published: May 3, 2022 (version 2)

Copyright

© 2022, Shorten et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 415
    views
  • 93
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David P Shorten
  2. Viola Priesemann
  3. Michael Wibral
  4. Joseph T Lizier
(2022)
Early lock-in of structured and specialised information flows during neural development
eLife 11:e74651.
https://doi.org/10.7554/eLife.74651

Share this article

https://doi.org/10.7554/eLife.74651

Further reading

    1. Computational and Systems Biology
    Antony M Jose
    Research Article

    Interacting molecules create regulatory architectures that can persist despite turnover of molecules. Although epigenetic changes occur within the context of such architectures, there is limited understanding of how they can influence the heritability of changes. Here, I develop criteria for the heritability of regulatory architectures and use quantitative simulations of interacting regulators parsed as entities, their sensors, and the sensed properties to analyze how architectures influence heritable epigenetic changes. Information contained in regulatory architectures grows rapidly with the number of interacting molecules and its transmission requires positive feedback loops. While these architectures can recover after many epigenetic perturbations, some resulting changes can become permanently heritable. Architectures that are otherwise unstable can become heritable through periodic interactions with external regulators, which suggests that mortal somatic lineages with cells that reproducibly interact with the immortal germ lineage could make a wider variety of architectures heritable. Differential inhibition of the positive feedback loops that transmit regulatory architectures across generations can explain the gene-specific differences in heritable RNA silencing observed in the nematode Caenorhabditis elegans. More broadly, these results provide a foundation for analyzing the inheritance of epigenetic changes within the context of the regulatory architectures implemented using diverse molecules in different living systems.

    1. Computational and Systems Biology
    2. Ecology
    Kazushi Tsutsui, Ryoya Tanaka ... Keisuke Fujii
    Research Article

    Collaborative hunting, in which predators play different and complementary roles to capture prey, has been traditionally believed to be an advanced hunting strategy requiring large brains that involve high-level cognition. However, recent findings that collaborative hunting has also been documented in smaller-brained vertebrates have placed this previous belief under strain. Here, using computational multi-agent simulations based on deep reinforcement learning, we demonstrate that decisions underlying collaborative hunts do not necessarily rely on sophisticated cognitive processes. We found that apparently elaborate coordination can be achieved through a relatively simple decision process of mapping between states and actions related to distance-dependent internal representations formed by prior experience. Furthermore, we confirmed that this decision rule of predators is robust against unknown prey controlled by humans. Our computational ecological results emphasize that collaborative hunting can emerge in various intra- and inter-specific interactions in nature, and provide insights into the evolution of sociality.