Perception of a conserved family of plant signalling peptides by the receptor kinase HSL3

  1. Jack Rhodes
  2. Andra-Octavia Roman
  3. Marta Bjornson
  4. Benjamin Brandt
  5. Paul Derbyshire
  6. Michele Wyler
  7. Marc W Schmid
  8. Frank LH Menke
  9. Julia Santiago
  10. Cyril Zipfel  Is a corresponding author
  1. The Sainsbury Laboratory, United Kingdom
  2. University of Lausanne, Switzerland
  3. University of Zurich, Switzerland
  4. The Sainsbury Laboratory,, United Kingdom
  5. MWSchmid GmbH, Switzerland

Abstract

Plant genomes encode hundreds of secreted peptides; however, relatively few have been characterised. We report here an uncharacterised, stress-induced family of plant signalling peptides, which we call CTNIPs. Based on the role of the common co-receptor BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1) in CTNIP-induced responses, we identified in Arabidopsis thaliana the orphan receptor kinase HAESA-LIKE 3 (HSL3) as the CTNIP receptor via a proteomics approach. CTNIP binding, ligand-triggered complex formation with BAK1, and induced downstream responses all involve HSL3. Notably, the HSL3-CTNIP signalling module is evolutionarily conserved amongst most extant angiosperms. The identification of this novel signalling module will further shed light on the diverse functions played by plant signalling peptides and will provide insights into receptor-ligand co-evolution.

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2016) partner repository with the dataset identifier PXD029264 and 10.6019/PXD029264The RNA-seq datasets generated and analysed in the current study have been deposited in the ArrayExpress database at EMBL-EBI (www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-11093.

Article and author information

Author details

  1. Jack Rhodes

    The Sainsbury Laboratory, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3953-1648
  2. Andra-Octavia Roman

    Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3037-3321
  3. Marta Bjornson

    Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8275-4521
  4. Benjamin Brandt

    Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5867-8760
  5. Paul Derbyshire

    The Sainsbury Laboratory,, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Michele Wyler

    MWSchmid GmbH, Glarus, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1097-5322
  7. Marc W Schmid

    MWSchmid GmbH, Glarus, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Frank LH Menke

    The Sainsbury Laboratory, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2490-4824
  9. Julia Santiago

    Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  10. Cyril Zipfel

    Department of Plant Molecular Biology, University of Zurich, Zurich, Switzerland
    For correspondence
    cyril.zipfel@botinst.uzh.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4935-8583

Funding

H2020 European Research Council (773153)

  • Cyril Zipfel

H2020 European Research Council (716358)

  • Julia Santiago

The Gatsby Charitable Foundation

  • Cyril Zipfel

Universität Zürich

  • Cyril Zipfel

Swiss National Science Foundation (31003A_182625)

  • Cyril Zipfel

Swiss National Science Foundation (31003A_173101)

  • Julia Santiago

Fondation philanthropique Famille Sandoz

  • Julia Santiago

H2020 Marie Skłodowska-Curie Actions (703954)

  • Marta Bjornson

Biotechnology and Biological Sciences Research Council (BB/P012574/1)

  • Cyril Zipfel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Caroline Gutjahr, Technical University of Munich, Germany

Version history

  1. Received: October 13, 2021
  2. Preprint posted: October 26, 2021 (view preprint)
  3. Accepted: May 26, 2022
  4. Accepted Manuscript published: May 26, 2022 (version 1)
  5. Version of Record published: June 13, 2022 (version 2)

Copyright

© 2022, Rhodes et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,732
    views
  • 1,282
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jack Rhodes
  2. Andra-Octavia Roman
  3. Marta Bjornson
  4. Benjamin Brandt
  5. Paul Derbyshire
  6. Michele Wyler
  7. Marc W Schmid
  8. Frank LH Menke
  9. Julia Santiago
  10. Cyril Zipfel
(2022)
Perception of a conserved family of plant signalling peptides by the receptor kinase HSL3
eLife 11:e74687.
https://doi.org/10.7554/eLife.74687

Share this article

https://doi.org/10.7554/eLife.74687

Further reading

    1. Plant Biology
    Ivan Kulich, Julia Schmid ... Jiří Friml
    Research Article

    Root gravitropic bending represents a fundamental aspect of terrestrial plant physiology. Gravity is perceived by sedimentation of starch-rich plastids (statoliths) to the bottom of the central root cap cells. Following gravity perception, intercellular auxin transport is redirected downwards leading to an asymmetric auxin accumulation at the lower root side causing inhibition of cell expansion, ultimately resulting in downwards bending. How gravity-induced statoliths repositioning is translated into asymmetric auxin distribution remains unclear despite PIN auxin efflux carriers and the Negative Gravitropic Response of roots (NGR) proteins polarize along statolith sedimentation, thus providing a plausible mechanism for auxin flow redirection. In this study, using a functional NGR1-GFP construct, we visualized the NGR1 localization on the statolith surface and plasma membrane (PM) domains in close proximity to the statoliths, correlating with their movements. We determined that NGR1 binding to these PM domains is indispensable for NGR1 functionality and relies on cysteine acylation and adjacent polybasic regions as well as on lipid and sterol PM composition. Detailed timing of the early events following graviperception suggested that both NGR1 repolarization and initial auxin asymmetry precede the visible PIN3 polarization. This discrepancy motivated us to unveil a rapid, NGR-dependent translocation of PIN-activating AGCVIII kinase D6PK towards lower PMs of gravity-perceiving cells, thus providing an attractive model for rapid redirection of auxin fluxes following gravistimulation.

    1. Plant Biology
    Daniel S Yu, Megan A Outram ... Simon J Williams
    Research Article

    Plant pathogens secrete proteins, known as effectors, that function in the apoplast or inside plant cells to promote virulence. Effector recognition by cell-surface or cytosolic receptors results in the activation of defence pathways and plant immunity. Despite their importance, our general understanding of fungal effector function and recognition by immunity receptors remains poor. One complication often associated with effectors is their high sequence diversity and lack of identifiable sequence motifs precluding prediction of structure or function. In recent years, several studies have demonstrated that fungal effectors can be grouped into structural classes, despite significant sequence variation and existence across taxonomic groups. Using protein X-ray crystallography, we identify a new structural class of effectors hidden within the secreted in xylem (SIX) effectors from Fusarium oxysporum f. sp. lycopersici (Fol). The recognised effectors Avr1 (SIX4) and Avr3 (SIX1) represent the founding members of the Fol dual-domain (FOLD) effector class, with members containing two distinct domains. Using AlphaFold2, we predicted the full SIX effector repertoire of Fol and show that SIX6 and SIX13 are also FOLD effectors, which we validated experimentally for SIX6. Based on structural prediction and comparisons, we show that FOLD effectors are present within three divisions of fungi and are expanded in pathogens and symbionts. Further structural comparisons demonstrate that Fol secretes effectors that adopt a limited number of structural folds during infection of tomato. This analysis also revealed a structural relationship between transcriptionally co-regulated effector pairs. We make use of the Avr1 structure to understand its recognition by the I receptor, which leads to disease resistance in tomato. This study represents an important advance in our understanding of Fol-tomato, and by extension plant–fungal interactions, which will assist in the development of novel control and engineering strategies to combat plant pathogens.