Perception of a conserved family of plant signalling peptides by the receptor kinase HSL3

  1. Jack Rhodes
  2. Andra-Octavia Roman
  3. Marta Bjornson
  4. Benjamin Brandt
  5. Paul Derbyshire
  6. Michele Wyler
  7. Marc W Schmid
  8. Frank LH Menke
  9. Julia Santiago
  10. Cyril Zipfel  Is a corresponding author
  1. The Sainsbury Laboratory, United Kingdom
  2. University of Lausanne, Switzerland
  3. University of Zurich, Switzerland
  4. The Sainsbury Laboratory,, United Kingdom
  5. MWSchmid GmbH, Switzerland

Abstract

Plant genomes encode hundreds of secreted peptides; however, relatively few have been characterised. We report here an uncharacterised, stress-induced family of plant signalling peptides, which we call CTNIPs. Based on the role of the common co-receptor BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1) in CTNIP-induced responses, we identified in Arabidopsis thaliana the orphan receptor kinase HAESA-LIKE 3 (HSL3) as the CTNIP receptor via a proteomics approach. CTNIP binding, ligand-triggered complex formation with BAK1, and induced downstream responses all involve HSL3. Notably, the HSL3-CTNIP signalling module is evolutionarily conserved amongst most extant angiosperms. The identification of this novel signalling module will further shed light on the diverse functions played by plant signalling peptides and will provide insights into receptor-ligand co-evolution.

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2016) partner repository with the dataset identifier PXD029264 and 10.6019/PXD029264The RNA-seq datasets generated and analysed in the current study have been deposited in the ArrayExpress database at EMBL-EBI (www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-11093.

Article and author information

Author details

  1. Jack Rhodes

    The Sainsbury Laboratory, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3953-1648
  2. Andra-Octavia Roman

    Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3037-3321
  3. Marta Bjornson

    Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8275-4521
  4. Benjamin Brandt

    Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5867-8760
  5. Paul Derbyshire

    The Sainsbury Laboratory,, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Michele Wyler

    MWSchmid GmbH, Glarus, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1097-5322
  7. Marc W Schmid

    MWSchmid GmbH, Glarus, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Frank LH Menke

    The Sainsbury Laboratory, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2490-4824
  9. Julia Santiago

    Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  10. Cyril Zipfel

    Department of Plant Molecular Biology, University of Zurich, Zurich, Switzerland
    For correspondence
    cyril.zipfel@botinst.uzh.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4935-8583

Funding

H2020 European Research Council (773153)

  • Cyril Zipfel

H2020 European Research Council (716358)

  • Julia Santiago

The Gatsby Charitable Foundation

  • Cyril Zipfel

Universität Zürich

  • Cyril Zipfel

Swiss National Science Foundation (31003A_182625)

  • Cyril Zipfel

Swiss National Science Foundation (31003A_173101)

  • Julia Santiago

Fondation philanthropique Famille Sandoz

  • Julia Santiago

H2020 Marie Skłodowska-Curie Actions (703954)

  • Marta Bjornson

Biotechnology and Biological Sciences Research Council (BB/P012574/1)

  • Cyril Zipfel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Caroline Gutjahr, Technical University of Munich, Germany

Version history

  1. Received: October 13, 2021
  2. Preprint posted: October 26, 2021 (view preprint)
  3. Accepted: May 26, 2022
  4. Accepted Manuscript published: May 26, 2022 (version 1)
  5. Version of Record published: June 13, 2022 (version 2)

Copyright

© 2022, Rhodes et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,662
    Page views
  • 1,267
    Downloads
  • 14
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jack Rhodes
  2. Andra-Octavia Roman
  3. Marta Bjornson
  4. Benjamin Brandt
  5. Paul Derbyshire
  6. Michele Wyler
  7. Marc W Schmid
  8. Frank LH Menke
  9. Julia Santiago
  10. Cyril Zipfel
(2022)
Perception of a conserved family of plant signalling peptides by the receptor kinase HSL3
eLife 11:e74687.
https://doi.org/10.7554/eLife.74687

Share this article

https://doi.org/10.7554/eLife.74687

Further reading

    1. Plant Biology
    Daniel S Yu, Megan A Outram ... Simon J Williams
    Research Article

    Plant pathogens secrete proteins, known as effectors, that function in the apoplast or inside plant cells to promote virulence. Effector recognition by cell-surface or cytosolic receptors results in the activation of defence pathways and plant immunity. Despite their importance, our general understanding of fungal effector function and recognition by immunity receptors remains poor. One complication often associated with effectors is their high sequence diversity and lack of identifiable sequence motifs precluding prediction of structure or function. In recent years, several studies have demonstrated that fungal effectors can be grouped into structural classes, despite significant sequence variation and existence across taxonomic groups. Using protein X-ray crystallography, we identify a new structural class of effectors hidden within the secreted in xylem (SIX) effectors from Fusarium oxysporum f. sp. lycopersici (Fol). The recognised effectors Avr1 (SIX4) and Avr3 (SIX1) represent the founding members of the Fol dual-domain (FOLD) effector class, with members containing two distinct domains. Using AlphaFold2, we predicted the full SIX effector repertoire of Fol and show that SIX6 and SIX13 are also FOLD effectors, which we validated experimentally for SIX6. Based on structural prediction and comparisons, we show that FOLD effectors are present within three divisions of fungi and are expanded in pathogens and symbionts. Further structural comparisons demonstrate that Fol secretes effectors that adopt a limited number of structural folds during infection of tomato. This analysis also revealed a structural relationship between transcriptionally co-regulated effector pairs. We make use of the Avr1 structure to understand its recognition by the I receptor, which leads to disease resistance in tomato. This study represents an important advance in our understanding of Fol-tomato, and by extension plant–fungal interactions, which will assist in the development of novel control and engineering strategies to combat plant pathogens.

    1. Ecology
    2. Plant Biology
    Jamie Mitchel Waterman, Tristan Michael Cofer ... Matthias Erb
    Research Article

    Volatiles emitted by herbivore-attacked plants (senders) can enhance defenses in neighboring plants (receivers), however, the temporal dynamics of this phenomenon remain poorly studied. Using a custom-built, high-throughput proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) system, we explored temporal patterns of volatile transfer and responses between herbivore-attacked and undamaged maize plants. We found that continuous exposure to natural blends of herbivore-induced volatiles results in clocked temporal response patterns in neighboring plants, characterized by an induced terpene burst at the onset of the second day of exposure. This delayed burst is not explained by terpene accumulation during the night, but coincides with delayed jasmonate accumulation in receiver plants. The delayed burst occurs independent of day:night light transitions and cannot be fully explained by sender volatile dynamics. Instead, it is the result of a stress memory from volatile exposure during the first day and secondary exposure to bioactive volatiles on the second day. Our study reveals that prolonged exposure to natural blends of stress-induced volatiles results in a response that integrates priming and direct induction into a distinct and predictable temporal response pattern. This provides an answer to the long-standing question of whether stress volatiles predominantly induce or prime plant defenses in neighboring plants, by revealing that they can do both in sequence.