Circadian Rhythm: How neurons adjust to diurnality

Being active during the day requires a slow-closing ion channel that dampens the activity of neurons in a specific area of the brain.
1 figure

Figures

Neurons with unique properties regulate suprachiasmatic nucleus (SCN) excitability to accommodate a diurnal lifestyle.

In both diurnal (left) and nocturnal (right) mammals, SCN activity (orange halos around neurons) is higher during the day (top, larger halos) than at night (bottom, smaller halos). In the R. pumilio SCN (left side) – but not in the mouse SCN (right side) – one out of three neurons (in magenta) shows a prolonged resting phase after inhibitory stimuli. This resting phase delays action potential firing, the frequency of which is shown in a simplified scheme on the upper left corner of each panel. This ‘brake’ to SCN excitability operates irrespective of the time of day, leading to reduced activity in the SCN of R. pumilio overall (left panels, smaller halos) while maintaining distinct excitation patterns between day and night. This activity pattern is likely an adaptation for diurnality.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gabriele Andreatta
  2. Charles N Allen
(2021)
Circadian Rhythm: How neurons adjust to diurnality
eLife 10:e74704.
https://doi.org/10.7554/eLife.74704