Structural basis of malaria transmission blockade by a monoclonal antibody to gamete fusogen HAP2

  1. Juan Feng
  2. Xianchi Dong
  3. Adam DeCosta
  4. Yang Su
  5. Fiona Angrisano
  6. Katarzyna A Sala
  7. Andrew M Blagborough
  8. Chafen Lu  Is a corresponding author
  9. Timothy A Springer  Is a corresponding author
  1. Boston Children's Hospital, United States
  2. Nanjing University, China
  3. Burnet Institute, Australia
  4. University of Cambridge, United Kingdom

Abstract

HAP2 is a transmembrane gamete fusogen found in multiple eukaryotic kingdoms and is structurally homologous to viral class II fusogens. Studies in Plasmodium have suggested that HAP2 is an attractive target for vaccines that block transmission of malaria. HAP2 has three extracellular domains, arranged in the order D2, D1, and D3. Here, we report monoclonal antibodies against the D3 fragment of Plasmodium berghei HAP2 and crystal structures of D3 in complex with Fab fragments of two of these antibodies, one of which blocks fertilization of Plasmodium berghei in vitro and transmission of malaria in mosquitoes. We also show how this Fab binds the complete HAP2 ectodomain with electron microscopy. The two antibodies cross-react with HAP2 among multiple plasmodial species. Our characterization of the Plasmodium D3 structure, HAP2 ectodomain architecture, and mechanism of inhibition provide insights for the development of a vaccine to block malaria transmission.

Data availability

Protein database accession IDs are 7LR3 for 2/6.14-Pb HAP2 D3 complex and 7LR4 for 2/1.12-Pb HAP2 D3 complex. Correspondence and requests for materials should be addressed to CL and TAS.

The following data sets were generated

Article and author information

Author details

  1. Juan Feng

    Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Xianchi Dong

    School of Life Sciences, Nanjing University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Adam DeCosta

    Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yang Su

    Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Fiona Angrisano

    Burnet Institute, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Katarzyna A Sala

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Andrew M Blagborough

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5257-8475
  8. Chafen Lu

    Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States
    For correspondence
    lu@crystal.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
  9. Timothy A Springer

    Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States
    For correspondence
    springer@crystal.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6627-2904

Funding

National Institutes of Health (R01AI95686)

  • Chafen Lu
  • Timothy A Springer

Royal Society

  • Andrew M Blagborough

Kidder Fund

  • Timothy A Springer

Medical Research Council (MR/N00227X/1)

  • Andrew M Blagborough

Isaac Newton Trust

  • Andrew M Blagborough

Alborada Fund

  • Andrew M Blagborough

Wellcome Trust ISSF

  • Andrew M Blagborough

University of Cambridge JRG Scheme

  • Andrew M Blagborough

GHIT

  • Andrew M Blagborough

Rosetrees Trust

  • Andrew M Blagborough

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Feng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,058
    views
  • 236
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Juan Feng
  2. Xianchi Dong
  3. Adam DeCosta
  4. Yang Su
  5. Fiona Angrisano
  6. Katarzyna A Sala
  7. Andrew M Blagborough
  8. Chafen Lu
  9. Timothy A Springer
(2021)
Structural basis of malaria transmission blockade by a monoclonal antibody to gamete fusogen HAP2
eLife 10:e74707.
https://doi.org/10.7554/eLife.74707

Share this article

https://doi.org/10.7554/eLife.74707

Further reading

    1. Microbiology and Infectious Disease
    Maneesh Kumar Singh, Victoria Ann Bonnell ... Celia RS Garcia
    Research Article

    Dynamic control of gene expression is critical for blood stage development of malaria parasites. Here, we used multi-omic analyses to investigate transcriptional regulation by the chromatin-associated microrchidia protein, MORC, during asexual blood stage development of the human malaria parasite Plasmodium falciparum. We show that PfMORC (PF3D7_1468100) interacts with a suite of nuclear proteins, including APETALA2 (ApiAP2) transcription factors (PfAP2-G5, PfAP2-O5, PfAP2-I, PF3D7_0420300, PF3D7_0613800, PF3D7_1107800, and PF3D7_1239200), a DNA helicase DS60 (PF3D7_1227100), and other chromatin remodelers (PfCHD1 and PfEELM2). Transcriptomic analysis of PfMORCHA-glmS knockdown parasites revealed 163 differentially expressed genes belonging to hypervariable multigene families, along with upregulation of genes mostly involved in host cell invasion. In vivo genome-wide chromatin occupancy analysis during both trophozoite and schizont stages of development demonstrates that PfMORC is recruited to repressed, multigene families, including the var genes in subtelomeric chromosomal regions. Collectively, we find that PfMORC is found in chromatin complexes that play a role in the epigenetic control of asexual blood stage transcriptional regulation and chromatin organization.

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Michael B Hall, Ryan R Wick ... Lachlan Coin
    Research Article

    Variant calling is fundamental in bacterial genomics, underpinning the identification of disease transmission clusters, the construction of phylogenetic trees, and antimicrobial resistance detection. This study presents a comprehensive benchmarking of variant calling accuracy in bacterial genomes using Oxford Nanopore Technologies (ONT) sequencing data. We evaluated three ONT basecalling models and both simplex (single-strand) and duplex (dual-strand) read types across 14 diverse bacterial species. Our findings reveal that deep learning-based variant callers, particularly Clair3 and DeepVariant, significantly outperform traditional methods and even exceed the accuracy of Illumina sequencing, especially when applied to ONT’s super-high accuracy model. ONT’s superior performance is attributed to its ability to overcome Illumina’s errors, which often arise from difficulties in aligning reads in repetitive and variant-dense genomic regions. Moreover, the use of high-performing variant callers with ONT’s super-high accuracy data mitigates ONT’s traditional errors in homopolymers. We also investigated the impact of read depth on variant calling, demonstrating that 10× depth of ONT super-accuracy data can achieve precision and recall comparable to, or better than, full-depth Illumina sequencing. These results underscore the potential of ONT sequencing, combined with advanced variant calling algorithms, to replace traditional short-read sequencing methods in bacterial genomics, particularly in resource-limited settings.