Hyperphosphatemia increases inflammation to exacerbate anemia and skeletal muscle wasting independently of FGF23-FGFR4 signaling

  1. Brian Czaya
  2. Kylie Heitman
  3. Isaac Campos
  4. Christopher Yanucil
  5. Dominik Kentrup
  6. David Westbrook
  7. Orlando Gutierrez
  8. Jodie L Babitt
  9. Grace Jung
  10. Isidro B Salusky
  11. Mark Hanudel
  12. Christian Faul  Is a corresponding author
  1. David Geffen School of Medicine at UCLA, United States
  2. University of Alabama at Birmingham, United States
  3. Massachusetts General Hospital, United States
1 additional file

Additional files

All additional files

Any figure supplements, source code, source data, videos or supplementary files associated with this article are contained within this zip.

https://cdn.elifesciences.org/articles/74782/elife-74782-supp-v1.zip

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brian Czaya
  2. Kylie Heitman
  3. Isaac Campos
  4. Christopher Yanucil
  5. Dominik Kentrup
  6. David Westbrook
  7. Orlando Gutierrez
  8. Jodie L Babitt
  9. Grace Jung
  10. Isidro B Salusky
  11. Mark Hanudel
  12. Christian Faul
(2022)
Hyperphosphatemia increases inflammation to exacerbate anemia and skeletal muscle wasting independently of FGF23-FGFR4 signaling
eLife 11:e74782.
https://doi.org/10.7554/eLife.74782