H3K9me1/2 methylation limits the lifespan of daf-2 mutants in C. elegans

  1. Meng Huang
  2. Minjie Hong
  3. Xinhao Hou
  4. Chengming Zhu
  5. Di Chen  Is a corresponding author
  6. Xiangyang Chen  Is a corresponding author
  7. Shouhong Guang  Is a corresponding author
  8. Xuezhu Feng  Is a corresponding author
  1. University of Science and Technology of China, China
  2. Nanjing University, China

Abstract

Histone methylation plays crucial roles in the development, gene regulation and maintenance of stem cell pluripotency in mammals. Recent work shows that histone methylation is associated with aging, yet the underlying mechanism remains unclear. In this work, we identified a class of putative histone 3 lysine 9 mono-/di-methyltransferase genes (met-2, set-6, set-19, set-20, set-21, set-32 and set-33), mutations in which induce synergistic lifespan extension in the long-lived DAF-2 (IGF-1 receptor) mutant in C. elegans. These putative histone methyltransferase plus daf-2 double mutants not only exhibited an average lifespan nearly three times that of wild-type animals and a maximal lifespan of approximately 100 days, but also significantly increased resistance to oxidative and heat stress. Synergistic lifespan extension depends on the transcription factor DAF-16 (FOXO). mRNA-seq experiments revealed that the mRNA levels of DAF-16 Class I genes, which are activated by DAF-16, were further elevated in the daf-2;set double mutants. Among these genes, tts-1, F35E8.7, ins-35, nhr-62, sod-3, asm-2 and Y39G8B.7 are required for the lifespan extension of the daf-2;set-21 double mutant. In addition, treating daf-2 animals with the H3K9me1/2 methyltransferase G9a inhibitor also extends lifespan and increases stress resistance. Therefore, investigation of DAF-2 and H3K9me1/2 deficiency-mediated synergistic longevity will contribute to a better understanding of the molecular mechanisms of aging and therapeutic applications.

Data availability

Sequencing data have been deposited in GSA under accession codes CRA005256.Figure 2 - Source Data 1 and Figure 8 - Source Data 2 contain the original files and figures of the blots used to generate the figures.Source Code Files 1 is used to convert BAM files to BigWig format in ChIP-seq data analysis.

Article and author information

Author details

  1. Meng Huang

    Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Minjie Hong

    Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Xinhao Hou

    Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Chengming Zhu

    Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Di Chen

    State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
    For correspondence
    chendi@nju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0514-7947
  6. Xiangyang Chen

    Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
    For correspondence
    xychen91@ustc.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  7. Shouhong Guang

    Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
    For correspondence
    sguang@ustc.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7700-9634
  8. Xuezhu Feng

    Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
    For correspondence
    fengxz@ustc.edu.cn
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Key Research and Development Program of China

  • Shouhong Guang

National Natural Science Foundation of China

  • Shouhong Guang

Fundamental Research Funds for the Central Universities

  • Shouhong Guang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Huang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,023
    views
  • 500
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Meng Huang
  2. Minjie Hong
  3. Xinhao Hou
  4. Chengming Zhu
  5. Di Chen
  6. Xiangyang Chen
  7. Shouhong Guang
  8. Xuezhu Feng
(2022)
H3K9me1/2 methylation limits the lifespan of daf-2 mutants in C. elegans
eLife 11:e74812.
https://doi.org/10.7554/eLife.74812

Share this article

https://doi.org/10.7554/eLife.74812

Further reading

    1. Chromosomes and Gene Expression
    2. Computational and Systems Biology
    Miguel Martinez-Ara, Federico Comoglio, Bas van Steensel
    Research Article

    Genes are often regulated by multiple enhancers. It is poorly understood how the individual enhancer activities are combined to control promoter activity. Anecdotal evidence has shown that enhancers can combine sub-additively, additively, synergistically, or redundantly. However, it is not clear which of these modes are more frequent in mammalian genomes. Here, we systematically tested how pairs of enhancers activate promoters using a three-way combinatorial reporter assay in mouse embryonic stem cells. By assaying about 69,000 enhancer-enhancer-promoter combinations we found that enhancer pairs generally combine near-additively. This behaviour was conserved across seven developmental promoters tested. Surprisingly, these promoters scale the enhancer signals in a non-linear manner that depends on promoter strength. A housekeeping promoter showed an overall different response to enhancer pairs, and a smaller dynamic range. Thus, our data indicate that enhancers mostly act additively, but promoters transform their collective effect non-linearly.

    1. Chromosomes and Gene Expression
    2. Medicine
    Xianghong Xie, Mingyue Gao ... Xiaojun Liu
    Research Article

    LncRNAs are involved in modulating the individual risk and the severity of progression in metabolic dysfunction-associated fatty liver disease (MASLD), but their precise roles remain largely unknown. This study aimed to investigate the role of lncRNA Snhg3 in the development and progression of MASLD, along with the underlying mechanisms. The result showed that Snhg3 was significantly downregulated in the liver of high-fat diet-induced obesity (DIO) mice. Notably, palmitic acid promoted the expression of Snhg3 and overexpression of Snhg3 increased lipid accumulation in primary hepatocytes. Furthermore, hepatocyte-specific Snhg3 deficiency decreased body and liver weight, alleviated hepatic steatosis and promoted hepatic fatty acid metabolism in DIO mice, whereas overexpression induced the opposite effect. Mechanistically, Snhg3 promoted the expression, stability and nuclear localization of SND1 protein via interacting with SND1, thereby inducing K63-linked ubiquitination modification of SND1. Moreover, Snhg3 decreased the H3K27me3 level and induced SND1-mediated chromatin loose remodeling, thus reducing H3K27me3 enrichment at the Pparg promoter and enhancing PPARγ expression. The administration of PPARγ antagonist T0070907 improved Snhg3-aggravated hepatic steatosis. Our study revealed a new signaling pathway, Snhg3/SND1/H3K27me3/PPARγ, responsible for mice MASLD and indicates that lncRNA-mediated epigenetic modification has a crucial role in the pathology of MASLD.