Somite morphogenesis is required for axial blood vessel formation during zebrafish embryogenesis

  1. Eric Paulissen
  2. Nicholas J Palmisano
  3. Joshua Waxman
  4. Benjamin Louis Martin  Is a corresponding author
  1. Stony Brook University, United States
  2. Cincinnati Children's Hospital Medical Center, United States

Abstract

Angioblasts that form the major axial blood vessels of the dorsal aorta and cardinal vein migrate towards the embryonic midline from distant lateral positions. Little is known about what controls the precise timing of angioblast migration and their final destination at the midline. Using zebrafish, we found that midline angioblast migration requires neighboring tissue rearrangements generated by somite morphogenesis. The somitic shape changes cause the adjacent notochord to separate from the underlying endoderm, creating a ventral midline cavity that provides a physical space for the angioblasts to migrate into. The anterior to posterior progression of midline angioblast migration is facilitated by retinoic acid induced anterior to posterior somite maturation and the subsequent progressive opening of the ventral midline cavity. Our work demonstrates a critical role for somite morphogenesis in organizing surrounding tissues to facilitate notochord positioning and angioblast migration, which is ultimately responsible for creating a functional cardiovascular system.

Data availability

Data generated or analysed during this study are included in the manuscript and supplemental files.

Article and author information

Author details

  1. Eric Paulissen

    Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9118-644X
  2. Nicholas J Palmisano

    Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Joshua Waxman

    Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8132-487X
  4. Benjamin Louis Martin

    Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    For correspondence
    benjamin.martin@stonybrook.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5474-4492

Funding

National Science Foundation (IOS 1452928)

  • Benjamin Louis Martin

National Institute of General Medical Sciences (R01GM124282)

  • Benjamin Louis Martin

National Institute of General Medical Sciences (T32GM008468)

  • Eric Paulissen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol (#301537) of Stony Brook University.

Copyright

© 2022, Paulissen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,916
    views
  • 196
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eric Paulissen
  2. Nicholas J Palmisano
  3. Joshua Waxman
  4. Benjamin Louis Martin
(2022)
Somite morphogenesis is required for axial blood vessel formation during zebrafish embryogenesis
eLife 11:e74821.
https://doi.org/10.7554/eLife.74821

Share this article

https://doi.org/10.7554/eLife.74821