Abstract

The SARS-CoV-2 non-structural protein 1 (Nsp1) contains an N-terminal domain and C-terminal helices connected by a short linker region. The C-terminal helices of Nsp1 (Nsp1-C-ter) from SARS-CoV-2 bind in the mRNA entry channel of the 40S ribosomal subunit and blocks mRNA entry, thereby shutting down host protein synthesis. Nsp1 suppresses host immune function and is vital for viral replication. Hence, Nsp1 appears to be an attractive target for therapeutics. In this study, we have in silico screened Food and Drug Administration (FDA)-approved drugs against Nsp1-C-ter. Among the top hits obtained, montelukast sodium hydrate binds to Nsp1 with a binding affinity (KD) of 10.8±0.2 µM in vitro. It forms a stable complex with Nsp1-C-ter in simulation runs with -95.8±13.3 kJ/mol binding energy. Montelukast sodium hydrate also rescues the inhibitory effect of Nsp1 in host protein synthesis, as demonstrated by the expression of firefly luciferase reporter gene in cells. Importantly, it shows antiviral activity against SARS-CoV-2 with reduced viral replication in HEK cells expressing ACE2 and Vero-E6 cells. We, therefore, propose montelukast sodium hydrate can be used as a lead molecule to design potent inhibitors to help combat SARS-CoV-2 infection.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file.

Article and author information

Author details

  1. Mohammad Afsar

    Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Rohan Narayan

    Department of Microbiology and Cell Biology, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Md Noor Akhtar

    Department of Biochemistry, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4669-1543
  4. Deepakash Das

    Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  5. Huma Rahil

    Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  6. Santhosh Kambaiah Nagaraj

    Department of Microbiology and Cell Biology, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  7. Sandeep M Eswarappa

    BiochemistryDepartment of Biochemistry, Indian Institute of Science Bangalore, Bengaluru, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7903-5198
  8. Shashank Tripathi

    Department of Microbiology and Cell Biology, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  9. Tanweer Hussain

    Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science Bangalore, Bangalore, India
    For correspondence
    hussain@iisc.ac.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4735-2380

Funding

DBT-Wellcome Trust India Alliance (IA/I/17/2/503313)

  • Tanweer Hussain

IRPHA (IPA/2020/000094)

  • Tanweer Hussain

DBT-Wellcome Trust India Alliance (IA/I/18/1/503613)

  • Shashank Tripathi

Swarnajayanti Fellowship (SB/SJF/2020-21/18)

  • Sandeep M Eswarappa

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Afsar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,970
    views
  • 772
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mohammad Afsar
  2. Rohan Narayan
  3. Md Noor Akhtar
  4. Deepakash Das
  5. Huma Rahil
  6. Santhosh Kambaiah Nagaraj
  7. Sandeep M Eswarappa
  8. Shashank Tripathi
  9. Tanweer Hussain
(2022)
Drug targeting Nsp1-ribosomal complex shows antiviral activity against SARS-CoV-2
eLife 11:e74877.
https://doi.org/10.7554/eLife.74877

Share this article

https://doi.org/10.7554/eLife.74877

Further reading

    1. Medicine
    2. Neuroscience
    Chi Zhang, Qian Huang ... Yun Guan
    Research Article

    Pain after surgery causes significant suffering. Opioid analgesics cause severe side effects and accidental death. Therefore, there is an urgent need to develop non-opioid therapies for managing post-surgical pain. Local application of Clarix Flo (FLO), a human amniotic membrane (AM) product, attenuated established post-surgical pain hypersensitivity without exhibiting known side effects of opioid use in mice. This effect was achieved through direct inhibition of nociceptive dorsal root ganglion (DRG) neurons via CD44-dependent pathways. We further purified the major matrix component, the heavy chain-hyaluronic acid/pentraxin 3 (HC-HA/PTX3) from human AM that has greater purity and water solubility than FLO. HC-HA/PTX3 replicated FLO-induced neuronal and pain inhibition. Mechanistically, HC-HA/PTX3-induced cytoskeleton rearrangements to inhibit sodium current and high-voltage activated calcium current on nociceptive DRG neurons, suggesting it is a key bioactive component mediating pain relief. Collectively, our findings highlight the potential of naturally derived biologics from human birth tissues as an effective non-opioid treatment for post-surgical pain. Moreover, we unravel the underlying neuronal mechanisms of pain inhibition induced by FLO and HC-HA/PTX3.

    1. Medicine
    Sami Fawaz, Severine Marti ... Thierry Couffinhal
    Research Article

    Background:

    Clonal hematopoiesis of indeterminate potential (CHIP) was initially linked to a twofold increase in atherothrombotic events. However, recent investigations have revealed a more nuanced picture, suggesting that CHIP may confer only a modest rise in myocardial infarction (MI) risk. This observed lower risk might be influenced by yet unidentified factors that modulate the pathological effects of CHIP. Mosaic loss of the Y chromosome (mLOY), a common marker of clonal hematopoiesis in men, has emerged as a potential candidate for modulating cardiovascular risk associated with CHIP. In this study, we aimed to ascertain the risk linked to each somatic mutation or mLOY and explore whether mLOY could exert an influence on the cardiovascular risk associated with CHIP.

    Methods:

    We conducted an examination for the presence of CHIP and mLOY using targeted high-throughput sequencing and digital PCR in a cohort of 446 individuals. Among them, 149 patients from the CHAth study had experienced a first MI at the time of inclusion (MI(+) subjects), while 297 individuals from the Three-City cohort had no history of cardiovascular events (CVE) at the time of inclusion (MI(-) subjects). All subjects underwent thorough cardiovascular phenotyping, including a direct assessment of atherosclerotic burden. Our investigation aimed to determine whether mLOY could modulate inflammation, atherosclerosis burden, and atherothrombotic risk associated with CHIP.

    Results:

    CHIP and mLOY were detected with a substantial prevalence (45.1% and 37.7%, respectively), and their occurrence was similar between MI(+) and MI(-) subjects. Notably, nearly 40% of CHIP(+) male subjects also exhibited mLOY. Interestingly, neither CHIP nor mLOY independently resulted in significant increases in plasma hs-CRP levels, atherosclerotic burden, or MI incidence. Moreover, mLOY did not amplify or diminish inflammation, atherosclerosis, or MI incidence among CHIP(+) male subjects. Conversely, in MI(-) male subjects, CHIP heightened the risk of MI over a 5 y period, particularly in those lacking mLOY.

    Conclusions:

    Our study highlights the high prevalence of CHIP and mLOY in elderly individuals. Importantly, our results demonstrate that neither CHIP nor mLOY in isolation substantially contributes to inflammation, atherosclerosis, or MI incidence. Furthermore, we find that mLOY does not exert a significant influence on the modulation of inflammation, atherosclerosis burden, or atherothrombotic risk associated with CHIP. However, CHIP may accelerate the occurrence of MI, especially when unaccompanied by mLOY. These findings underscore the complexity of the interplay between CHIP, mLOY, and cardiovascular risk, suggesting that large-scale studies with thousands more patients may be necessary to elucidate subtle correlations.

    Funding:

    This study was supported by the Fondation Cœur & Recherche (the Société Française de Cardiologie), the Fédération Française de Cardiologie, ERA-CVD (« CHEMICAL » consortium, JTC 2019) and the Fondation Université de Bordeaux. The laboratory of Hematology of the University Hospital of Bordeaux benefitted of a convention with the Nouvelle Aquitaine Region (2018-1R30113-8473520) for the acquisition of the Nextseq 550Dx sequencer used in this study.

    Clinical trial number:

    NCT04581057.