Dopaminergic challenge dissociates learning from primary versus secondary sources of information

  1. Alicia J Rybicki  Is a corresponding author
  2. Sophie L Sowden
  3. Bianca Schuster
  4. Jennifer L Cook
  1. University of Birmingham, United Kingdom

Abstract

Some theories of human cultural evolution posit that humans have social-specific learning mechanisms that are adaptive specialisations moulded by natural selection to cope with the pressures of group living. However, the existence of neurochemical pathways that are specialised for learning from social information and from individual experience is widely debated. Cognitive neuroscientific studies present mixed evidence for social-specific learning mechanisms: some studies find dissociable neural correlates for social and individual learning whereas others find the same brain areas and, dopamine-mediated, computations involved in both. Here we demonstrate that, like individual learning, social learning is modulated by the dopamine D2 receptor antagonist haloperidol when social information is the primary learning source, but not when it comprises a secondary, additional element. Two groups (total N = 43) completed a decision-making task which required primary learning, from own experience, and secondary learning from an additional source. For one group the primary source was social, and secondary was individual; for the other group this was reversed. Haloperidol affected primary learning irrespective of social/individual nature, with no effect on learning from the secondary source. Thus, we illustrate that dopaminergic mechanisms underpinning learning can be dissociated along a primary-secondary but not a social-individual axis. These results resolve conflict in the literature and support an expanding field showing that, rather than being specialised for particular inputs, neurochemical pathways in the human brain can process both social and non-social cues and arbitrate between the two depending upon which cue is primarily relevant for the task at hand.

Data availability

All raw data and analysis scripts can be accessed at the Open Science Framework data repository:​​https://osf.io/398w4/?view_only=08c062a9694a4b00ac7cbc52ee333628

Article and author information

Author details

  1. Alicia J Rybicki

    University of Birmingham, Birmingham, United Kingdom
    For correspondence
    axr783@bham.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6668-1214
  2. Sophie L Sowden

    University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9913-0515
  3. Bianca Schuster

    University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Jennifer L Cook

    University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4916-8667

Funding

Biotechnology and Biological Sciences Research Council (Midlands Integrative Biosciences Training Partnership (MIBTP) Doctoral Funding)

  • Alicia J Rybicki

H2020 European Research Council (757583 - Brain2Bee)

  • Sophie L Sowden
  • Bianca Schuster
  • Jennifer L Cook

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Steve W C Chang, Yale University, United States

Ethics

Human subjects: Informed consent was obtained from each subject. The study was in line with the local ethical guidelines approved by the local ethics committee (ERN_18_1588) and in accordance with the Helsinki Declaration of 1975.

Version history

  1. Received: October 20, 2021
  2. Preprint posted: December 3, 2021 (view preprint)
  3. Accepted: March 14, 2022
  4. Accepted Manuscript published: March 15, 2022 (version 1)
  5. Accepted Manuscript updated: March 16, 2022 (version 2)
  6. Version of Record published: April 21, 2022 (version 3)

Copyright

© 2022, Rybicki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,228
    views
  • 131
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alicia J Rybicki
  2. Sophie L Sowden
  3. Bianca Schuster
  4. Jennifer L Cook
(2022)
Dopaminergic challenge dissociates learning from primary versus secondary sources of information
eLife 11:e74893.
https://doi.org/10.7554/eLife.74893

Share this article

https://doi.org/10.7554/eLife.74893

Further reading

    1. Neuroscience
    Alyssa D Huff, Marlusa Karlen-Amarante ... Jan-Marino Ramirez
    Research Advance

    Obstructive sleep apnea (OSA) is a prevalent sleep-related breathing disorder that results in multiple bouts of intermittent hypoxia. OSA has many neurological and systemic comorbidities, including dysphagia, or disordered swallow, and discoordination with breathing. However, the mechanism in which chronic intermittent hypoxia (CIH) causes dysphagia is unknown. Recently, we showed the postinspiratory complex (PiCo) acts as an interface between the swallow pattern generator (SPG) and the inspiratory rhythm generator, the preBötzinger complex, to regulate proper swallow-breathing coordination (Huff et al., 2023). PiCo is characterized by interneurons co-expressing transporters for glutamate (Vglut2) and acetylcholine (ChAT). Here we show that optogenetic stimulation of ChATcre:Ai32, Vglut2cre:Ai32, and ChATcre:Vglut2FlpO:ChR2 mice exposed to CIH does not alter swallow-breathing coordination, but unexpectedly disrupts swallow behavior via triggering variable swallow motor patterns. This suggests that glutamatergic–cholinergic neurons in PiCo are not only critical for the regulation of swallow-breathing coordination, but also play an important role in the modulation of swallow motor patterning. Our study also suggests that swallow disruption, as seen in OSA, involves central nervous mechanisms interfering with swallow motor patterning and laryngeal activation. These findings are crucial for understanding the mechanisms underlying dysphagia, both in OSA and other breathing and neurological disorders.

    1. Neuroscience
    Vezha Boboeva, Alberto Pezzotta ... Athena Akrami
    Research Article

    The central tendency bias, or contraction bias, is a phenomenon where the judgment of the magnitude of items held in working memory appears to be biased toward the average of past observations. It is assumed to be an optimal strategy by the brain and commonly thought of as an expression of the brain’s ability to learn the statistical structure of sensory input. On the other hand, recency biases such as serial dependence are also commonly observed and are thought to reflect the content of working memory. Recent results from an auditory delayed comparison task in rats suggest that both biases may be more related than previously thought: when the posterior parietal cortex (PPC) was silenced, both short-term and contraction biases were reduced. By proposing a model of the circuit that may be involved in generating the behavior, we show that a volatile working memory content susceptible to shifting to the past sensory experience – producing short-term sensory history biases – naturally leads to contraction bias. The errors, occurring at the level of individual trials, are sampled from the full distribution of the stimuli and are not due to a gradual shift of the memory toward the sensory distribution’s mean. Our results are consistent with a broad set of behavioral findings and provide predictions of performance across different stimulus distributions and timings, delay intervals, as well as neuronal dynamics in putative working memory areas. Finally, we validate our model by performing a set of human psychophysics experiments of an auditory parametric working memory task.