Abstract

mTORC1 senses nutrients and growth factors and phosphorylates downstream targets, including the transcription factor TFEB, to coordinate metabolic supply and demand. These functions position mTORC1 as a central controller of cellular homeostasis, but the behavior of this system in individual cells has not been well characterized. Here, we provide measurements necessary to refine quantitative models for mTORC1 as a metabolic controller. We developed a series of fluorescent protein-TFEB fusions and a multiplexed immunofluorescence approach to investigate how combinations of stimuli jointly regulate mTORC1 signaling at the single-cell level. Live imaging of individual MCF10A cells confirmed that mTORC1-TFEB signaling responds continuously to individual, sequential, or simultaneous treatment with amino acids and the growth factor insulin. Under physiologically relevant concentrations of amino acids, we observe correlated fluctuations in TFEB, AMPK, and AKT signaling that indicate continuous activity adjustments to nutrient availability. Using partial least squares regression modeling, we show that these continuous gradations are connected to protein synthesis rate via a distributed network of mTORC1 effectors, providing quantitative support for the qualitative model of mTORC1 as a homeostatic controller and clarifying its functional behavior within individual cells.

Data availability

The following files contain the per-cell fluorescence intensity data, extracted from microscope image data, that were used to generate each figure in the paper:Sparta2023_Figure1_SourceData1.xlsSparta2023_Figure1_SourceData2.xlsSparta2023_Figure2_SourceData1.xlsxSparta2023_Figure3_SourceData1.xlsSparta2023_Figure4_SourceData1.xlsxSparta2023_Figure4_SourceData2.xlsxSparta2023_Figure4_SourceData3.xlsxSparta2023_Figure4_SourceData4.xlsxSparta2023_Figure4_SourceData5.xlsxSparta2023_Figure4_SourceData6.xlsxSparta2023_Figure5_SourceData1.xlsxSparta2023_Figure5_SourceData2.xlsxSparta2023_Figure5_SourceData3.xlsxSparta2023_Figure5_SourceData4.xlsxSparta2023_Figure6_SourceData1.xlsx

Article and author information

Author details

  1. Breanne Sparta

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  2. Nont Kosaisawe

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  3. Michael Pargett

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  4. Madhura Patankar

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  5. Nicholaus DeCuzzi

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  6. John G Albeck

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    For correspondence
    jgalbeck@ucdavis.edu
    Competing interests
    John G Albeck, John Albeck has received research grants from Kirin Corporation..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2688-8653

Funding

National Institute of General Medical Sciences (R35GM139621)

  • John G Albeck

National Institute of General Medical Sciences (R01GM115650)

  • John G Albeck

National Science Foundation (2136040)

  • John G Albeck

National Heart, Lung, and Blood Institute (T32HL007013)

  • Nicholaus DeCuzzi

National Institute of General Medical Sciences (F31GM120937)

  • Breanne Sparta

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Sparta et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,788
    views
  • 283
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Breanne Sparta
  2. Nont Kosaisawe
  3. Michael Pargett
  4. Madhura Patankar
  5. Nicholaus DeCuzzi
  6. John G Albeck
(2023)
Continuous sensing of nutrients and growth factors by the mTORC1-TFEB axis
eLife 12:e74903.
https://doi.org/10.7554/eLife.74903

Share this article

https://doi.org/10.7554/eLife.74903

Further reading

    1. Cell Biology
    Masroor Ahmad Paddar, Fulong Wang ... Vojo Deretic
    Research Article

    ATG5 is one of the core autophagy proteins with additional functions such as noncanonical membrane atg8ylation, which among a growing number of biological outputs includes control of tuberculosis in animal models. Here, we show that ATG5 associates with retromer’s core components VPS26, VPS29, and VPS35 and modulates retromer function. Knockout of ATG5 blocked trafficking of a key glucose transporter sorted by the retromer, GLUT1, to the plasma membrane. Knockouts of other genes essential for membrane atg8ylation, of which ATG5 is a component, affected GLUT1 sorting, indicating that membrane atg8ylation as a process affects retromer function and endosomal sorting. The contribution of membrane atg8ylation to retromer function in GLUT1 sorting was independent of canonical autophagy. These findings expand the scope of membrane atg8ylation to specific sorting processes in the cell dependent on the retromer and its known interactors.

    1. Cancer Biology
    2. Cell Biology
    Maojin Tian, Le Yang ... Peiqing Zhao
    Research Article

    TIPE (TNFAIP8) has been identified as an oncogene and participates in tumor biology. However, how its role in the metabolism of tumor cells during melanoma development remains unclear. Here, we demonstrated that TIPE promoted glycolysis by interacting with pyruvate kinase M2 (PKM2) in melanoma. We found that TIPE-induced PKM2 dimerization, thereby facilitating its translocation from the cytoplasm to the nucleus. TIPE-mediated PKM2 dimerization consequently promoted HIF-1α activation and glycolysis, which contributed to melanoma progression and increased its stemness features. Notably, TIPE specifically phosphorylated PKM2 at Ser 37 in an extracellular signal-regulated kinase (ERK)-dependent manner. Consistently, the expression of TIPE was positively correlated with the levels of PKM2 Ser37 phosphorylation and cancer stem cell (CSC) markers in melanoma tissues from clinical samples and tumor bearing mice. In summary, our findings indicate that the TIPE/PKM2/HIF-1α signaling pathway plays a pivotal role in promoting CSC properties by facilitating the glycolysis, which would provide a promising therapeutic target for melanoma intervention.