Continuous sensing of nutrients and growth factors by the mTORC1-TFEB axis
Abstract
mTORC1 senses nutrients and growth factors and phosphorylates downstream targets, including the transcription factor TFEB, to coordinate metabolic supply and demand. These functions position mTORC1 as a central controller of cellular homeostasis, but the behavior of this system in individual cells has not been well characterized. Here, we provide measurements necessary to refine quantitative models for mTORC1 as a metabolic controller. We developed a series of fluorescent protein-TFEB fusions and a multiplexed immunofluorescence approach to investigate how combinations of stimuli jointly regulate mTORC1 signaling at the single-cell level. Live imaging of individual MCF10A cells confirmed that mTORC1-TFEB signaling responds continuously to individual, sequential, or simultaneous treatment with amino acids and the growth factor insulin. Under physiologically relevant concentrations of amino acids, we observe correlated fluctuations in TFEB, AMPK, and AKT signaling that indicate continuous activity adjustments to nutrient availability. Using partial least squares regression modeling, we show that these continuous gradations are connected to protein synthesis rate via a distributed network of mTORC1 effectors, providing quantitative support for the qualitative model of mTORC1 as a homeostatic controller and clarifying its functional behavior within individual cells.
Data availability
The following files contain the per-cell fluorescence intensity data, extracted from microscope image data, that were used to generate each figure in the paper:Sparta2023_Figure1_SourceData1.xlsSparta2023_Figure1_SourceData2.xlsSparta2023_Figure2_SourceData1.xlsxSparta2023_Figure3_SourceData1.xlsSparta2023_Figure4_SourceData1.xlsxSparta2023_Figure4_SourceData2.xlsxSparta2023_Figure4_SourceData3.xlsxSparta2023_Figure4_SourceData4.xlsxSparta2023_Figure4_SourceData5.xlsxSparta2023_Figure4_SourceData6.xlsxSparta2023_Figure5_SourceData1.xlsxSparta2023_Figure5_SourceData2.xlsxSparta2023_Figure5_SourceData3.xlsxSparta2023_Figure5_SourceData4.xlsxSparta2023_Figure6_SourceData1.xlsx
Article and author information
Author details
Funding
National Institute of General Medical Sciences (R35GM139621)
- John G Albeck
National Institute of General Medical Sciences (R01GM115650)
- John G Albeck
National Science Foundation (2136040)
- John G Albeck
National Heart, Lung, and Blood Institute (T32HL007013)
- Nicholaus DeCuzzi
National Institute of General Medical Sciences (F31GM120937)
- Breanne Sparta
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2023, Sparta et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,042
- views
-
- 292
- downloads
-
- 6
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.