Abstract

<strong>Background:</strong> Type I interferons (IFNs) promote the expansion of subsets of CD1c+ conventional dendritic cells (CD1c+ DCs), but the molecular basis of CD1c+ DCs involvement in conditions not associated without elevated type I IFNs remains unclear. <strong>Methods:</strong> We analyzed CD1c+ DCs from two cohorts of non-infectious uveitis patients and healthy donors using RNA-sequencing followed by high-dimensional flow cytometry to characterize the CD1c+ DC populations. <strong>Results:</strong> We report that the CD1c+ DCs pool from patients with non-infectious uveitis is skewed towards a gene module with the chemokine receptor CX3CR1 as the key hub gene. We confirmed these results in an independent case-control cohort and show that the disease-associated gene module is not mediated by type I IFNs. An analysis of peripheral blood using flow cytometry revealed that CX3CR1+ DC3s were diminished, whereas CX3CR1- DC3s were not. Stimulated CX3CR1+ DC3s secrete high levels of inflammatory cytokines, including TNF-alpha, and CX3CR1+ DC3-like cells can be detected in inflamed eyes of patients. <strong>Conclusions:</strong> These results show that CX3CR1+ DC3s are implicated in non-infectious uveitis and can secrete proinflammatory mediators implicated in its pathophysiology. <strong>Funding:</strong> The presented work is supported by UitZicht (project number #2014-4, #2019-10, an #2021-4). The funders had no role in the design, execution, interpretation, or writing of the study.

Data availability

All raw data and data scripts are available via dataverseNL: https://doi.org/10.34894/9Q0FVO and deposited in NCBI's Gene Expression Omnibus accessible through GEO Series accession numbers GSE195501 and GSE194060.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Sanne Hiddingh

    Ophthalmo-Immunology, Utrecht University, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
  2. Aridaman Pandit

    Center for Translational Immunology, Utrecht University, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2057-9737
  3. Fleurieke Verhagen

    Ophthalmo-Immunology, Utrecht University, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
  4. Rianne Rijken

    Center for Translational Immunology, Utrecht University, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
  5. Nila Hendrika Servaas

    Center for Translational Immunology, Utrecht University, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9825-7554
  6. Rina CGK Wichers

    Center for Translational Immunology, Utrecht University, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
  7. Ninette H ten Dam-van Loon

    Department of Ophthalmology, Utrecht University, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
  8. Saskia S Imhof

    Ophthalmo-Immunology, Utrecht University, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
  9. Timothy RDJ Radstake

    Department of Ophthalmology, Utrecht University, Utrecht, Netherlands
    Competing interests
    Timothy RDJ Radstake, was a principal investigator in the immune catalyst program of GlaxoSmithKline, which was an independent research program. He did not receive any financial support. Currently, TR is an employee of Abbvie where he holds stock. TR had no part in the design and interpretation of the study results after he started at Abbvie..
  10. Joke H de Boer

    Department of Ophthalmology, Utrecht University, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
  11. Jonas JW Kuiper

    Center for Translational Immunology, Utrecht University, Utrecht, Netherlands
    For correspondence
    j.j.w.kuiper@umcutrecht.nl
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5370-6395

Funding

UitZicht (#2014-4)

  • Jonas JW Kuiper

UitZicht (#2019-10)

  • Jonas JW Kuiper

UitZicht (#2021-4)

  • Jonas JW Kuiper

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: This study was conducted in compliance with the Helsinki principles. Ethical approval was requested and obtained from the Medical Ethical Research Committee in Utrecht. All patients signed written informed consent before participation. (METC protocol number #14-065/M).

Copyright

© 2023, Hiddingh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 767
    views
  • 96
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sanne Hiddingh
  2. Aridaman Pandit
  3. Fleurieke Verhagen
  4. Rianne Rijken
  5. Nila Hendrika Servaas
  6. Rina CGK Wichers
  7. Ninette H ten Dam-van Loon
  8. Saskia S Imhof
  9. Timothy RDJ Radstake
  10. Joke H de Boer
  11. Jonas JW Kuiper
(2023)
Transcriptome network analysis implicates CX3CR1-positive type 3 dendritic cells in non-infectious uveitis
eLife 12:e74913.
https://doi.org/10.7554/eLife.74913

Share this article

https://doi.org/10.7554/eLife.74913

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Armando Montoya-Garcia, Idaira M Guerrero-Fonseca ... Michael Schnoor
    Research Article

    Arpin was discovered as an inhibitor of the Arp2/3 complex localized at the lamellipodial tip of fibroblasts, where it regulated migration steering. Recently, we showed that arpin stabilizes the epithelial barrier in an Arp2/3-dependent manner. However, the expression and functions of arpin in endothelial cells (EC) have not yet been described. Arpin mRNA and protein are expressed in EC and downregulated by pro-inflammatory cytokines. Arpin depletion in Human Umbilical Vein Endothelial Cells causes the formation of actomyosin stress fibers leading to increased permeability in an Arp2/3-independent manner. Instead, inhibitors of ROCK1 and ZIPK, kinases involved in the generation of stress fibers, normalize the loss-of-arpin effects on actin filaments and permeability. Arpin-deficient mice are viable but show a characteristic vascular phenotype in the lung including edema, microhemorrhage, and vascular congestion, increased F-actin levels, and vascular permeability. Our data show that, apart from being an Arp2/3 inhibitor, arpin is also a regulator of actomyosin contractility and endothelial barrier integrity.

    1. Immunology and Inflammation
    Alexandra a Aybar-Torres, Lennon A Saldarriaga ... Lei Jin
    Research Article

    The significance of STING1 gene in tissue inflammation and cancer immunotherapy has been increasingly recognized. Intriguingly, common human STING1 alleles R71H-G230A-R293Q (HAQ) and G230A-R293Q (AQ) are carried by ~60% of East Asians and ~40% of Africans, respectively. Here, we examine the modulatory effects of HAQ, AQ alleles on STING-associated vasculopathy with onset in infancy (SAVI), an autosomal dominant, fatal inflammatory disease caused by gain-of-function human STING1 mutations. CD4 T cellpenia is evident in SAVI patients and mouse models. Using Sting1 knock-in mice expressing common human STING1 alleles HAQ, AQ, and Q293, we found that HAQ, AQ, and Q293 splenocytes resist STING1-mediated cell death ex vivo, establishing a critical role of STING1 residue 293 in cell death. The HAQ/SAVI(N153S) and AQ/SAVI(N153S) mice did not have CD4 T cellpenia. The HAQ/SAVI(N153S), AQ/SAVI(N153S) mice have more (~10-fold, ~20-fold, respectively) T-regs than WT/SAVI(N153S) mice. Remarkably, while they have comparable TBK1, IRF3, and NFκB activation as the WT/SAVI, the AQ/SAVI mice have no tissue inflammation, regular body weight, and normal lifespan. We propose that STING1 activation promotes tissue inflammation by depleting T-regs cells in vivo. Billions of modern humans have the dominant HAQ, AQ alleles. STING1 research and STING1-targeting immunotherapy should consider STING1 heterogeneity in humans.