Single-cell analysis of the aged ovarian immune system reveals a shift towards adaptive immunity and attenuated cell function

  1. Tal Ben Yaakov
  2. Tanya Wasserman
  3. Eliel Aknin
  4. Yonatan Savir  Is a corresponding author
  1. Technion - Israel Institute of Technology, Israel

Abstract

The immune system plays a major role in maintaining many physiological processes in the reproductive system. However, a complete characterization of the immune milieu in the ovary, and particularly how it is affected by female aging, is still lacking. Here, we utilize single-cell RNA sequencing and flow cytometry to construct the complete description of the murine ovarian immune system. We show that the composition of the immune cells undergoes an extensive shift with age towards adaptive immunity. We analyze the effect of aging on gene expression and chemokine and cytokine networks and show an overall decreased expression of inflammatory mediators together with an increased expression of senescent cells recognition receptors. Our results suggest that the fertile female's ovarian immune aging differs from the suggested female post-menopause inflammaging as it copes with the inflammatory stimulations during repeated cycles and the increasing need for clearance of accumulating atretic follicles.

Data availability

All data used in this study are included in the manuscript, the supporting files and in GitHub:https://github.com/SavirLab/AgingOvarianImmuneMilieu

Article and author information

Author details

  1. Tal Ben Yaakov

    Department of Physiology, Biophysics and Systems Biology, Technion - Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Tanya Wasserman

    Department of Physiology, Biophysics and Systems Biology, Technion - Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0221-1891
  3. Eliel Aknin

    Department of Physiology, Biophysics and Systems Biology, Technion - Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Yonatan Savir

    Department of Physiology, Biophysics and Systems Biology, Technion - Israel Institute of Technology, Haifa, Israel
    For correspondence
    yoni.savir@technion.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5345-8491

Funding

Israel Science Foundation (1619/20)

  • Tal Ben Yaakov
  • Tanya Wasserman
  • Eliel Aknin
  • Yonatan Savir

Rappaport Family Institute for Research in the Medical Sciences

  • Tal Ben Yaakov
  • Tanya Wasserman
  • Eliel Aknin
  • Yonatan Savir

Wolfson Foundation

  • Tal Ben Yaakov
  • Tanya Wasserman
  • Eliel Aknin
  • Yonatan Savir

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.This work is supported by the Rappaport Family Institute for Research in the Medical Sciences (YS), the Russell Berrie Nanotechnology Institute (YS), UOM-Israel collaboration (YS), The Wolfson Foundation (YS), ISF grant 1860/21 (RH).

Ethics

Animal experimentation: All mouse experiments performed in this study were approved by the Animal Care and UseCommittee of the Technion, Israel Institute of Technology, and found to confirm with theregulations of this Institution for work with laboratory animals, protocol No: IL-069-05-2021.

Copyright

© 2023, Ben Yaakov et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,062
    views
  • 328
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tal Ben Yaakov
  2. Tanya Wasserman
  3. Eliel Aknin
  4. Yonatan Savir
(2023)
Single-cell analysis of the aged ovarian immune system reveals a shift towards adaptive immunity and attenuated cell function
eLife 12:e74915.
https://doi.org/10.7554/eLife.74915

Share this article

https://doi.org/10.7554/eLife.74915

Further reading

    1. Computational and Systems Biology
    Harlan P Stevens, Carly V Winegar ... Stephen R Piccolo
    Research Article

    To help maximize the impact of scientific journal articles, authors must ensure that article figures are accessible to people with color-vision deficiencies (CVDs), which affect up to 8% of males and 0.5% of females. We evaluated images published in biology- and medicine-oriented research articles between 2012 and 2022. Most included at least one color contrast that could be problematic for people with deuteranopia (‘deuteranopes’), the most common form of CVD. However, spatial distances and within-image labels frequently mitigated potential problems. Initially, we reviewed 4964 images from eLife, comparing each against a simulated version that approximated how it might appear to deuteranopes. We identified 636 (12.8%) images that we determined would be difficult for deuteranopes to interpret. Our findings suggest that the frequency of this problem has decreased over time and that articles from cell-oriented disciplines were most often problematic. We used machine learning to automate the identification of problematic images. For a hold-out test set from eLife (n=879), a convolutional neural network classified the images with an area under the precision-recall curve of 0.75. The same network classified images from PubMed Central (n=1191) with an area under the precision-recall curve of 0.39. We created a Web application (https://bioapps.byu.edu/colorblind_image_tester); users can upload images, view simulated versions, and obtain predictions. Our findings shed new light on the frequency and nature of scientific images that may be problematic for deuteranopes and motivate additional efforts to increase accessibility.

    1. Computational and Systems Biology
    Matthew Millard, David W Franklin, Walter Herzog
    Research Article

    The force developed by actively lengthened muscle depends on different structures across different scales of lengthening. For small perturbations, the active response of muscle is well captured by a linear-time-invariant (LTI) system: a stiff spring in parallel with a light damper. The force response of muscle to longer stretches is better represented by a compliant spring that can fix its end when activated. Experimental work has shown that the stiffness and damping (impedance) of muscle in response to small perturbations is of fundamental importance to motor learning and mechanical stability, while the huge forces developed during long active stretches are critical for simulating and predicting injury. Outside of motor learning and injury, muscle is actively lengthened as a part of nearly all terrestrial locomotion. Despite the functional importance of impedance and active lengthening, no single muscle model has all these mechanical properties. In this work, we present the viscoelastic-crossbridge active-titin (VEXAT) model that can replicate the response of muscle to length changes great and small. To evaluate the VEXAT model, we compare its response to biological muscle by simulating experiments that measure the impedance of muscle, and the forces developed during long active stretches. In addition, we have also compared the responses of the VEXAT model to a popular Hill-type muscle model. The VEXAT model more accurately captures the impedance of biological muscle and its responses to long active stretches than a Hill-type model and can still reproduce the force-velocity and force-length relations of muscle. While the comparison between the VEXAT model and biological muscle is favorable, there are some phenomena that can be improved: the low frequency phase response of the model, and a mechanism to support passive force enhancement.