Mutated neuronal voltage-gated CaV2.1 channels causing familial hemiplegic migraine 1 increase the susceptibility for cortical spreading depolarization and seizures and worsen outcome after experimental traumatic brain injury

  1. Nicole A Terpollili
  2. Reinhard Dolp
  3. Kai Waehner
  4. Susanne M Schwarzmaier
  5. Elisabeth Rumbler
  6. Boyan Todorov
  7. Michel D Ferrari
  8. Arn MJM van dem Maagdenburg
  9. Nikolaus Plesnila  Is a corresponding author
  1. Ludwig Maximilian University of Munich (LMU), Germany
  2. Mannheim University, Germany
  3. Leiden University Medical Center, Netherlands

Abstract

Patients suffering from familial hemiplegic migraine type 1 (FHM1) may have a disproportionally severe outcome after head trauma, but the underlying mechanisms are unclear. Hence, we subjected knock-in mice carrying the severer S218L or milder R192Q FHM1 gain-of-function missense mutation in the CACNA1A gene that encodes the α1A subunit of neuronal voltage-gated CaV2.1 (P/Q-type) calcium channels and their wild-type (WT) littermates to experimental traumatic brain injury (TBI) by controlled cortical impact (CCI) and investigated cortical spreading depolarizations (CSDs), lesion volume, brain edema formation, and functional outcome. After TBI, all mutant mice displayed considerably more CSDs and seizures than WT mice, while S218L mutant mice had a substantially higher mortality. Brain edema formation and the resulting increase in intracranial pressure was more pronounced in mutant mice, while only S218L mutant mice had larger lesion volumes and worse functional outcome. Here we show that gain of CaV2.1 channel function worsens histopathological and functional outcome after TBI in mice. This phenotype was associated with a higher number of CSDs, increased seizure activity, and more pronounced brain edema formation. Hence, our results suggest increased susceptibility for CSDs and seizures as potential mechanisms for bad outcome after TBI in FHM1 mutation carriers.

Data availability

All data generated or analyzed during this study are included in the manuscript. Source Data are available for all figures. A link to a data repository (OSF.io) is provided in the manuscript.

Article and author information

Author details

  1. Nicole A Terpollili

    Institute for Stroke and Dementia Research, Ludwig Maximilian University of Munich (LMU), Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7070-3113
  2. Reinhard Dolp

    Department of Neurosurgery, Ludwig Maximilian University of Munich (LMU), Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Kai Waehner

    Department of Neurosurgery, Mannheim University, Mannheim, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Susanne M Schwarzmaier

    Institute for Stroke and Dementia Research, Ludwig Maximilian University of Munich (LMU), Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Elisabeth Rumbler

    Department of Neurosurgery, Ludwig Maximilian University of Munich (LMU), Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Boyan Todorov

    Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Michel D Ferrari

    Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Arn MJM van dem Maagdenburg

    Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. Nikolaus Plesnila

    Institute for Stroke and Dementia Research, Ludwig Maximilian University of Munich (LMU), Munich, Germany
    For correspondence
    Nikolaus.Plesnila@med.uni-muenchen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8832-228X

Funding

University of Munich FoeFoLe Program (#669)

  • Nicole A Terpollili

Netherlands Organization for Scientific Research (918.56.602)

  • Arn MJM van dem Maagdenburg

Centre of Medical System Biology (050-060-409)

  • Arn MJM van dem Maagdenburg

European Community (FP7-EUROHEADPAIN)

  • Arn MJM van dem Maagdenburg

Deutsche Forschungsgemeinschaft (EXC 2145 SyNergy - ID 390857198)

  • Nikolaus Plesnila

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was reviewed by the Ethics Board and approved by the Veterinary Office of the Government of Upper Bavaria (protocol # 118/05). All of the animals were handled according to approved institutional animal care protocols. All surgery was performed in deep inhalation anesthesia and animals received appropriate analgesia post-surgery. Every effort was made to minimize suffering.

Copyright

© 2022, Terpollili et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 772
    views
  • 120
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicole A Terpollili
  2. Reinhard Dolp
  3. Kai Waehner
  4. Susanne M Schwarzmaier
  5. Elisabeth Rumbler
  6. Boyan Todorov
  7. Michel D Ferrari
  8. Arn MJM van dem Maagdenburg
  9. Nikolaus Plesnila
(2022)
Mutated neuronal voltage-gated CaV2.1 channels causing familial hemiplegic migraine 1 increase the susceptibility for cortical spreading depolarization and seizures and worsen outcome after experimental traumatic brain injury
eLife 11:e74923.
https://doi.org/10.7554/eLife.74923

Share this article

https://doi.org/10.7554/eLife.74923

Further reading

    1. Biochemistry and Chemical Biology
    2. Medicine
    Soo-Yeon Hwang, Kyung-Hwa Jeon ... Youngjoo Kwon
    Research Article

    HER2 overexpression significantly contributes to the aggressive nature and recurrent patterns observed in various solid tumors, notably gastric cancers. Trastuzumab, HER2-targeting monoclonal antibody drug, has shown considerable clinical success; however, readily emerging drug resistance emphasizes the pressing need for improved interventions in HER2-overexpressing cancers. To address this, we proposed targeting the protein-protein interaction (PPI) between ELF3 and MED23 as an alternative therapeutic approach to trastuzumab. In this study, we synthesized a total of 26 compounds consisting of 10 chalcones, 7 pyrazoline acetyl, and 9 pyrazoline propionyl derivatives, and evaluated their biological activity as potential ELF3-MED23 PPI inhibitors. Upon systematic analysis, candidate compound 10 was selected due to its potency in downregulating reporter gene activity of ERBB2 promoter confirmed by SEAP activity and its effect on HER2 protein and mRNA levels. Compound 10 effectively disrupted the binding interface between the ELF3 TAD domain and the 391–582 amino acid region of MED23, resulting in successful inhibition of the ELF3-MED23 PPI. This intervention led to a substantial reduction in HER2 levels and its downstream signals in the HER2-positive gastric cancer cell line. Subsequently, compound 10 induced significant apoptosis and anti-proliferative effects, demonstrating superior in vitro and in vivo anticancer activity overall. We found that the anticancer activity of compound 10 was not only restricted to trastuzumab-sensitive cases, but was also valid for trastuzumab-refractory clones. This suggests its potential as a viable therapeutic option for trastuzumab-resistant gastric cancers. In summary, compound 10 could be a novel alternative therapeutic strategy for HER2-overexpressing cancers, overcoming the limitations of trastuzumab.

    1. Medicine
    Jeong-Oh Shin, Jong-Bin Lee ... Jin-Woo Kim
    Research Article

    This study investigates the effects of two parathyroid hormone (PTH) analogs, rhPTH(1-34) and dimeric R25CPTH(1-34), on bone regeneration and osseointegration in a postmenopausal osteoporosis model using beagle dogs. Twelve osteoporotic female beagles were subjected to implant surgeries and assigned to one of three groups: control, rhPTH(1-34), or dimeric R25CPTH(1-34). Bone regeneration and osseointegration were evaluated after 10 weeks using micro-computed tomographic (micro-CT), histological analyses, and serum biochemical assays. Results showed that the rhPTH(1-34) group demonstrated superior improvements in bone mineral density, trabecular architecture, and osseointegration compared to controls, while the dimeric R25CPTH(1-34) group exhibited similar, though slightly less pronounced, anabolic effects. Histological and TRAP assays indicated both PTH analogs significantly enhanced bone regeneration, especially in artificially created bone defects. The findings suggest that both rhPTH(1-34) and dimeric R25CPTH(1-34) hold potential as therapeutic agents for promoting bone regeneration and improving osseointegration around implants in osteoporotic conditions, with implications for their use in bone-related pathologies and reconstructive surgeries.