Abstract

Cyclophilin D (CypD) promotes opening of the mitochondrial permeability transition pore (MPTP) which plays a key role in both cell physiology and pathology. It is, therefore, beneficial for cells to tightly regulate CypD and MPTP but little is known about such regulation. We have reported before that CypD is downregulated and MPTP deactivated during differentiation in various tissues. Herein, we identify BMP/Smad signaling, a major driver of differentiation, as a transcriptional regulator of the CypD gene, Ppif. Using osteogenic induction of mesenchymal lineage cells as a BMP/Smad activation-dependent differentiation model, we show that CypD is in fact transcriptionally repressed during this process. The importance of such CypD downregulation is evidenced by the negative effect of CypD 'rescue' via gain-of-function on osteogenesis both in vitro and in a mouse model . In sum, we characterized BMP/Smad signaling as a regulator of CypD expression and elucidated the role of CypD downregulation during cell differentiation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files (Raw data file)

Article and author information

Author details

  1. Rubens Sautchuk Jr

    Center for Musculoskeletal Research, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0302-7562
  2. Brianna H Kalicharan

    Center for Musculoskeletal Research, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Katherine Escalera-Rivera

    Center for Musculoskeletal Research, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jennifer H Jonason

    Center for Musculoskeletal Research, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. George A Porter Jr

    Department of Pediatrics, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Hani A Awad

    Center for Musculoskeletal Research, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2197-2610
  7. Roman A Eliseev

    Center for Musculoskeletal Research, University of Rochester, Rochester, United States
    For correspondence
    roman_eliseev@urmc.rochester.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6783-7388

Funding

National Institute of Dental and Craniofacial Research (R90-DE022529)

  • Rubens Sautchuk Jr

National Institute of Arthritis and Musculoskeletal and Skin Diseases (R21 AR070928)

  • Jennifer H Jonason

National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01 AR070613)

  • Hani A Awad

National Institute of Arthritis and Musculoskeletal and Skin Diseases (R21 AR070928)

  • Roman A Eliseev

National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01 AR072601)

  • Roman A Eliseev

National Institute of Arthritis and Musculoskeletal and Skin Diseases (P30 AR069655)

  • Rubens Sautchuk Jr
  • Brianna H Kalicharan
  • Katherine Escalera-Rivera
  • Jennifer H Jonason
  • Hani A Awad
  • Roman A Eliseev

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol (#2012-043) of the University of Rochester. All surgery was performed under anesthesia, and every effort was made to minimize suffering.

Copyright

© 2022, Sautchuk et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,019
    views
  • 210
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rubens Sautchuk Jr
  2. Brianna H Kalicharan
  3. Katherine Escalera-Rivera
  4. Jennifer H Jonason
  5. George A Porter Jr
  6. Hani A Awad
  7. Roman A Eliseev
(2022)
Transcriptional regulation of Cyclophilin D by BMP/SMAD signaling and its role in osteogenic differentiation
eLife 11:e75023.
https://doi.org/10.7554/eLife.75023

Share this article

https://doi.org/10.7554/eLife.75023

Further reading

    1. Stem Cells and Regenerative Medicine
    Ryosuke Isotani, Masaki Igarashi ... Toshimasa Yamauchi
    Research Article

    Cigarette smoking is a well-known risk factor inducing the development and progression of various diseases. Nicotine (NIC) is the major constituent of cigarette smoke. However, knowledge of the mechanism underlying the NIC-regulated stem cell functions is limited. In this study, we demonstrate that NIC increases the abundance and proliferative activity of murine intestinal stem cells (ISCs) in vivo and ex vivo. Moreover, NIC induces Yes-associated protein (YAP) /Transcriptional coactivator with PDZ-binding motif (TAZ) and Notch signaling in ISCs via α7-nicotinic acetylcholine receptor (nAchR) and protein kinase C (PKC) activation; this effect was not detected in Paneth cells. The inhibition of Notch signaling by dibenzazepine (DBZ) nullified the effects of NIC on ISCs. NIC enhances in vivo tumor formation from ISCs after loss of the tumor suppressor gene Apc, DBZ inhibited NIC-induced tumor growth. Hence, this study identifies a NIC-triggered pathway regulating the stemness and tumorigenicity of ISCs and suggests the use of DBZ as a potential therapeutic strategy for treating intestinal tumors.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Paolo Petazzi, Telma Ventura ... Antonella Fidanza
    Tools and Resources

    A major challenge in the stem cell biology field is the ability to produce fully functional cells from induced pluripotent stem cells (iPSCs) that are a valuable resource for cell therapy, drug screening, and disease modelling. Here, we developed a novel inducible CRISPR-mediated activation strategy (iCRISPRa) to drive the expression of multiple endogenous transcription factors (TFs) important for in vitro cell fate and differentiation of iPSCs to haematopoietic progenitor cells. This work has identified a key role for IGFBP2 in developing haematopoietic progenitors. We first identified nine candidate TFs that we predicted to be involved in blood cell emergence during development, then generated tagged gRNAs directed to the transcriptional start site of these TFs that could also be detected during single-cell RNA sequencing (scRNAseq). iCRISPRa activation of these endogenous TFs resulted in a significant expansion of arterial-fated endothelial cells expressing high levels of IGFBP2, and our analysis indicated that IGFBP2 is involved in the remodelling of metabolic activity during in vitro endothelial to haematopoietic transition. As well as providing fundamental new insights into the mechanisms of haematopoietic differentiation, the broader applicability of iCRISPRa provides a valuable tool for studying dynamic processes in development and for recapitulating abnormal phenotypes characterised by ectopic activation of specific endogenous gene expression in a wide range of systems.