Experimental microevolution of Trypanosoma cruzi reveals hybridization and clonal mechanisms driving rapid diversification of genome sequence and structure

  1. Gabriel Machado Matos
  2. Michael D Lewis
  3. Carlos Talavera-López
  4. Matthew Yeo
  5. Edmundo C Grisard
  6. Louisa A Messenger
  7. Michael Miles
  8. Björn Andersson  Is a corresponding author
  1. Universidade Federal de Santa Catarina, Brazil
  2. London School of Hygiene and Tropical Medicine, United Kingdom
  3. Helmholtz Zentrum München, Germany
  4. Karolinska Institute, Sweden

Abstract

Protozoa and fungi are known to have extraordinarily diverse mechanisms of genetic exchange. However, the presence and epidemiological relevance of genetic exchange in Trypanosoma cruzi, the agent of Chagas disease, has been controversial and debated for many years. Field studies have identified both predominantly clonal and sexually recombining natural populations. Two of six natural T. cruzi lineages (TcV and TcVI) show hybrid mosaicism, using analysis of single-gene locus markers. The formation of hybrid strains in vitro has been achieved and this provides a framework to study the mechanisms and adaptive significance of genetic exchange. Using whole genome sequencing of a set of experimental hybrids strains, we have confirmed that hybrid formation initially results in tetraploid parasites. The hybrid progeny showed novel mutations that were not attributable to either (diploid) parent showing an increase in amino acid changes. In long-term culture, up to 800 generations, there was a variable but gradual erosion of progeny genomes towards triploidy, yet retention of elevated copy number was observed at several core housekeeping loci. Our findings indicate hybrid formation by fusion of diploid T. cruzi, followed by sporadic genome erosion, but with substantial potential for adaptive evolution, as has been described as a genetic feature of other organisms, such as some fungi.

Data availability

The data generated in this study have been submitted to the NCBI BioProject database (https://www.ncbi.nlm.nih.gov/bioproject/) under accession number PRJNA748998.

The following data sets were generated

Article and author information

Author details

  1. Gabriel Machado Matos

    Universidade Federal de Santa Catarina, Florianopolis, Brazil
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3744-2673
  2. Michael D Lewis

    Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Carlos Talavera-López

    Helmholtz Zentrum München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Matthew Yeo

    Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Edmundo C Grisard

    Universidade Federal de Santa Catarina, Florianopolis, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  6. Louisa A Messenger

    Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Michael Miles

    Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Björn Andersson

    Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
    For correspondence
    bjorn.andersson@ki.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4624-0259

Funding

Swedish Research Council, Bjorn Andersson, Michael Miles (Project Grant)

  • Gabriel Machado Matos

CAPES, Edmundo Grisard, Bjorn Andersson (Student Scholarship)

  • Björn Andersson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Antoine Claessens, University of Montpellier, France

Version history

  1. Preprint posted: October 24, 2021 (view preprint)
  2. Received: November 3, 2021
  3. Accepted: April 22, 2022
  4. Accepted Manuscript published: May 10, 2022 (version 1)
  5. Version of Record published: May 12, 2022 (version 2)
  6. Version of Record updated: May 13, 2022 (version 3)

Copyright

© 2022, Matos et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,820
    views
  • 234
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gabriel Machado Matos
  2. Michael D Lewis
  3. Carlos Talavera-López
  4. Matthew Yeo
  5. Edmundo C Grisard
  6. Louisa A Messenger
  7. Michael Miles
  8. Björn Andersson
(2022)
Experimental microevolution of Trypanosoma cruzi reveals hybridization and clonal mechanisms driving rapid diversification of genome sequence and structure
eLife 11:e75237.
https://doi.org/10.7554/eLife.75237

Share this article

https://doi.org/10.7554/eLife.75237

Further reading

    1. Genetics and Genomics
    Doo Eun Choi, Jun Wan Shin ... Jong-Min Lee
    Research Article

    An expanded CAG repeat in the huntingtin gene (HTT) causes Huntington’s disease (HD). Since the length of uninterrupted CAG repeat, not polyglutamine, determines the age-at-onset in HD, base editing strategies to convert CAG to CAA are anticipated to delay onset by shortening the uninterrupted CAG repeat. Here, we developed base editing strategies to convert CAG in the repeat to CAA and determined their molecular outcomes and effects on relevant disease phenotypes. Base editing strategies employing combinations of cytosine base editors and guide RNAs (gRNAs) efficiently converted CAG to CAA at various sites in the CAG repeat without generating significant indels, off-target edits, or transcriptome alterations, demonstrating their feasibility and specificity. Candidate BE strategies converted CAG to CAA on both expanded and non-expanded CAG repeats without altering HTT mRNA and protein levels. In addition, somatic CAG repeat expansion, which is the major disease driver in HD, was significantly decreased in the liver by a candidate BE strategy treatment in HD knock-in mice carrying canonical CAG repeats. Notably, CAG repeat expansion was abolished entirely in HD knock-in mice carrying CAA-interrupted repeats, supporting the therapeutic potential of CAG-to-CAA conversion strategies in HD and potentially other repeat expansion disorders.

    1. Cell Biology
    2. Genetics and Genomics
    Yangzi Zhao, Lijun Ren ... Zhukuan Cheng
    Research Article

    Cohesin is a multi-subunit protein that plays a pivotal role in holding sister chromatids together during cell division. Sister chromatid cohesion 3 (SCC3), constituents of cohesin complex, is highly conserved from yeast to mammals. Since the deletion of individual cohesin subunit always causes lethality, it is difficult to dissect its biological function in both mitosis and meiosis. Here, we obtained scc3 weak mutants using CRISPR-Cas9 system to explore its function during rice mitosis and meiosis. The scc3 weak mutants displayed obvious vegetative defects and complete sterility, underscoring the essential roles of SCC3 in both mitosis and meiosis. SCC3 is localized on chromatin from interphase to prometaphase in mitosis. However, in meiosis, SCC3 acts as an axial element during early prophase I and subsequently situates onto centromeric regions following the disassembly of the synaptonemal complex. The loading of SCC3 onto meiotic chromosomes depends on REC8. scc3 shows severe defects in homologous pairing and synapsis. Consequently, SCC3 functions as an axial element that is essential for maintaining homologous chromosome pairing and synapsis during meiosis.