Experimental microevolution of Trypanosoma cruzi reveals hybridization and clonal mechanisms driving rapid diversification of genome sequence and structure

  1. Gabriel Machado Matos
  2. Michael D Lewis
  3. Carlos Talavera-López
  4. Matthew Yeo
  5. Edmundo C Grisard
  6. Louisa A Messenger
  7. Michael Miles
  8. Björn Andersson  Is a corresponding author
  1. Universidade Federal de Santa Catarina, Brazil
  2. London School of Hygiene and Tropical Medicine, United Kingdom
  3. Helmholtz Zentrum München, Germany
  4. Karolinska Institute, Sweden

Peer review process

This article was accepted for publication via eLife's original publishing model. eLife publishes the authors' accepted manuscript as a PDF only version before the full Version of Record is ready for publication. Peer reviews are published along with the Version of Record.

History

  1. Version of Record updated
  2. Version of Record published
  3. Accepted Manuscript published
  4. Accepted
  5. Received
  6. Preprint posted

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gabriel Machado Matos
  2. Michael D Lewis
  3. Carlos Talavera-López
  4. Matthew Yeo
  5. Edmundo C Grisard
  6. Louisa A Messenger
  7. Michael Miles
  8. Björn Andersson
(2022)
Experimental microevolution of Trypanosoma cruzi reveals hybridization and clonal mechanisms driving rapid diversification of genome sequence and structure
eLife 11:e75237.
https://doi.org/10.7554/eLife.75237

Share this article

https://doi.org/10.7554/eLife.75237