Listeria monocytogenes requires cellular respiration for NAD+ regeneration and pathogenesis

  1. Rafael Rivera-Lugo
  2. David Deng
  3. Andrea Anaya-Sanchez
  4. Sara Tejedor-Sanz
  5. Eugene Tang
  6. Valeria M Reyes Ruiz
  7. Hans B Smith
  8. Denis V Titov
  9. John Demian Sauer
  10. Eric P Skaar
  11. Caroline M Ajo-Franklin
  12. Daniel A Portnoy
  13. Samuel H Light  Is a corresponding author
  1. University of California, Berkeley, United States
  2. Rice University, United States
  3. Vanderbilt University Medical Center, United States
  4. University of Wisconsin-Madison, United States
  5. University of Chicago, United States

Abstract

Cellular respiration is essential for multiple bacterial pathogens and a validated antibiotic target. In addition to driving oxidative phosphorylation, bacterial respiration has a variety of ancillary functions that obscure its contribution to pathogenesis. We find here that the intracellular pathogen Listeria monocytogenes encodes two respiratory pathways which are partially functionally redundant and indispensable for pathogenesis. Loss of respiration decreased NAD+ regeneration, but this could be specifically reversed by heterologous expression of a water-forming NADH oxidase (NOX). NOX expression fully rescued intracellular growth defects and increased L. monocytogenes loads >1,000-fold in a mouse infection model. Consistent with NAD+ regeneration maintaining L. monocytogenes viability and enabling immune evasion, a respiration-deficient strain exhibited elevated bacteriolysis within the host cytosol and NOX expression rescued this phenotype. These studies show that NAD+ regeneration represents a major role of L. monocytogenes respiration and highlight the nuanced relationship between bacterial metabolism, physiology, and pathogenesis.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Rafael Rivera-Lugo

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2346-2297
  2. David Deng

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  3. Andrea Anaya-Sanchez

    Graduate Group in Microbiology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  4. Sara Tejedor-Sanz

    Department of Biosciences, Rice University, Houston, United States
    Competing interests
    No competing interests declared.
  5. Eugene Tang

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  6. Valeria M Reyes Ruiz

    Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
  7. Hans B Smith

    Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  8. Denis V Titov

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    Denis V Titov, is a co-inventor on a filed patent describing the use of NOX. (US Patent App. 15/749,218).
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5677-0651
  9. John Demian Sauer

    Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9367-794X
  10. Eric P Skaar

    Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    No competing interests declared.
  11. Caroline M Ajo-Franklin

    Department of Biosciences, Rice University, Houston, United States
    Competing interests
    No competing interests declared.
  12. Daniel A Portnoy

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  13. Samuel H Light

    Department of Microbiology, University of Chicago, Chicago, United States
    For correspondence
    samlight@uchicago.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8074-1348

Funding

National Institutes of Health (T32GM007215)

  • Hans B Smith

Searle Scholars Program

  • Samuel H Light

National Institutes of Health (R01AI137070)

  • John Demian Sauer

National Institutes of Health (R01AI073843)

  • Eric P Skaar

National Institutes of Health (R01AI073843)

  • Eric P Skaar

National Institutes of Health (1P01AI063302)

  • Daniel A Portnoy

National Institutes of Health (1R01AI27655)

  • Daniel A Portnoy

National Institutes of Health (K22AI144031)

  • Samuel H Light

National Academies of Sciences, Engineering, and Medicine (Ford Foundation Fellowship)

  • Rafael Rivera-Lugo

University of California (Dissertation-Year Fellowship)

  • Rafael Rivera-Lugo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal work was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Protocols were reviewed and approved by the Animal Care and Use Committee at the University of California, Berkeley (AUP 2016-05-8811).

Reviewing Editor

  1. Sophie Helaine, Harvard Medical School, United States

Publication history

  1. Received: November 9, 2021
  2. Preprint posted: November 25, 2021 (view preprint)
  3. Accepted: April 4, 2022
  4. Accepted Manuscript published: April 5, 2022 (version 1)
  5. Version of Record published: May 11, 2022 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,316
    Page views
  • 231
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rafael Rivera-Lugo
  2. David Deng
  3. Andrea Anaya-Sanchez
  4. Sara Tejedor-Sanz
  5. Eugene Tang
  6. Valeria M Reyes Ruiz
  7. Hans B Smith
  8. Denis V Titov
  9. John Demian Sauer
  10. Eric P Skaar
  11. Caroline M Ajo-Franklin
  12. Daniel A Portnoy
  13. Samuel H Light
(2022)
Listeria monocytogenes requires cellular respiration for NAD+ regeneration and pathogenesis
eLife 11:e75424.
https://doi.org/10.7554/eLife.75424
  1. Further reading

Further reading

    1. Biochemistry and Chemical Biology
    Ziyue Wang, Michael Mülleder ... Markus Ralser
    Research Article

    The possibility to record proteomes in high throughput and at high quality has opened new avenues for biomedical research, drug discovery, systems biology, and clinical translation. However, high-throughput proteomic experiments often require high sample amounts and can be less sensitive compared to conventional proteomic experiments. Here, we introduce and benchmark Zeno SWATH MS, a data-independent acquisition technique that employs a linear ion trap pulsing (Zeno trap pulsing) to increase the sensitivity in high-throughput proteomic experiments. We demonstrate that when combined with fast micro- or analytical flow-rate chromatography, Zeno SWATH MS increases protein identification with low sample amounts. For instance, using 20 min micro-flow-rate chromatography, Zeno SWATH MS identified more than 5000 proteins consistently, and with a coefficient of variation of 6%, from a 62.5 ng load of human cell line tryptic digest. Using 5 min analytical flow-rate chromatography (800 µl/min), Zeno SWATH MS identified 4907 proteins from a triplicate injection of 2 µg of a human cell lysate, or more than 3000 proteins from a 250 ng tryptic digest. Zeno SWATH MS hence facilitates sensitive high-throughput proteomic experiments with low sample amounts, mitigating the current bottlenecks of high-throughput proteomics.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Jinli Geng, Yingjun Tang ... Xiaodong Liu
    Research Article Updated

    Dynamic Ca2+ signals reflect acute changes in membrane excitability, and also mediate signaling cascades in chronic processes. In both cases, chronic Ca2+ imaging is often desired, but challenged by the cytotoxicity intrinsic to calmodulin (CaM)-based GCaMP, a series of genetically-encoded Ca2+ indicators that have been widely applied. Here, we demonstrate the performance of GCaMP-X in chronic Ca2+ imaging of cortical neurons, where GCaMP-X by design is to eliminate the unwanted interactions between the conventional GCaMP and endogenous (apo)CaM-binding proteins. By expressing in adult mice at high levels over an extended time frame, GCaMP-X showed less damage and improved performance in two-photon imaging of sensory (whisker-deflection) responses or spontaneous Ca2+ fluctuations, in comparison with GCaMP. Chronic Ca2+ imaging of one month or longer was conducted for cultured cortical neurons expressing GCaMP-X, unveiling that spontaneous/local Ca2+ transients progressively developed into autonomous/global Ca2+ oscillations. Along with the morphological indices of neurite length and soma size, the major metrics of oscillatory Ca2+, including rate, amplitude and synchrony were also examined. Dysregulations of both neuritogenesis and Ca2+ oscillations became discernible around 2–3 weeks after virus injection or drug induction to express GCaMP in newborn or mature neurons, which were exacerbated by stronger or prolonged expression of GCaMP. In contrast, neurons expressing GCaMP-X were significantly less damaged or perturbed, altogether highlighting the unique importance of oscillatory Ca2+ to neural development and neuronal health. In summary, GCaMP-X provides a viable solution for Ca2+ imaging applications involving long-time and/or high-level expression of Ca2+ probes.