Three-dimensional structure of kinetochore-fibers in human mitotic spindles

  1. Robert Kiewisz  Is a corresponding author
  2. Gunar Fabig
  3. William Conway
  4. Daniel Baum
  5. Daniel J Needleman
  6. Thomas Müller-Reichert  Is a corresponding author
  1. Technische Universität Dresden, Germany
  2. Harvard University, United States
  3. Zuse Institute Berlin, Germany

Abstract

During cell division, kinetochore microtubules (KMTs) provide a physical linkage between the chromosomes and the rest of the spindle. KMTs in mammalian cells are organized into bundles, so-called kinetochore-fibers (k-fibers), but the ultrastructure of these fibers is currently not well characterized. Here we show by large-scale electron tomography that each k-fiber in HeLa cells in metaphase is composed of approximately nine KMTs, only half of which reach the spindle pole. Our comprehensive reconstructions allowed us to analyze the three-dimensional (3D) morphology of k-fibers and their surrounding MTs in detail. We found that k-fibers exhibit remarkable variation in circumference and KMT density along their length, with the pole-proximal side showing a broadening. Extending our structural analysis then to other MTs in the spindle, we further observed that the association of KMTs with non-KMTs predominantly occurs in the spindle pole regions. Our 3D reconstructions have implications for KMT growth and k-fiber self-organization models as covered in a parallel publication applying complementary live-cell imaging in combination with biophysical modeling (Conway et al., 2022). Finally, we also introduce a new visualization tool allowing an interactive display of our 3D spindle data that will serve as a resource for further structural studies on mitosis in human cells.

Data availability

All Datasets were uploaded and ara available in OpaRA server:http://doi.org/10.25532/OPARA-128; http://doi.org/10.25532/OPARA-177he code used to perform quantitative analysis and visualization of MT organization in spindles has been uploaded to the GitHub repository and is available as open access under the GPL v3.0 license:https://github.com/RRobert92/ASGA; https://github.com/RRobert92/ASGA_3DViewer

The following data sets were generated

Article and author information

Author details

  1. Robert Kiewisz

    Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
    For correspondence
    robert.kiewisz@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2733-4978
  2. Gunar Fabig

    Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3017-0978
  3. William Conway

    Department of Physics, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7532-4331
  4. Daniel Baum

    Department of Visual and Data-Centric Computing, Zuse Institute Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Daniel J Needleman

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Thomas Müller-Reichert

    Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
    For correspondence
    mueller-reichert@tu-dresden.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0203-1436

Funding

Deutsche Forschungsgemeinschaft (MU 1423/8-2)

  • Robert Kiewisz
  • Gunar Fabig
  • Thomas Müller-Reichert

Horizon 2020 Framework Programme (675737)

  • Robert Kiewisz
  • Thomas Müller-Reichert

Harvard University

  • William Conway
  • Daniel J Needleman

Nick Simons Foundation (1764269)

  • William Conway
  • Daniel J Needleman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Adèle L Marston, University of Edinburgh, United Kingdom

Version history

  1. Received: November 10, 2021
  2. Preprint posted: November 13, 2021 (view preprint)
  3. Accepted: July 24, 2022
  4. Accepted Manuscript published: July 27, 2022 (version 1)
  5. Version of Record published: August 10, 2022 (version 2)
  6. Version of Record updated: August 15, 2022 (version 3)

Copyright

© 2022, Kiewisz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,959
    views
  • 503
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Robert Kiewisz
  2. Gunar Fabig
  3. William Conway
  4. Daniel Baum
  5. Daniel J Needleman
  6. Thomas Müller-Reichert
(2022)
Three-dimensional structure of kinetochore-fibers in human mitotic spindles
eLife 11:e75459.
https://doi.org/10.7554/eLife.75459

Share this article

https://doi.org/10.7554/eLife.75459

Further reading

    1. Cell Biology
    Joanne Tung, Lei Huang ... Adriana Ordonez
    Research Article

    Activating transcription factor 6 (ATF6) is one of three endoplasmic reticulum (ER) transmembrane stress sensors that mediate the unfolded protein response (UPR). Despite its crucial role in long-term ER stress adaptation, regulation of ATF6 alpha (α) signalling remains poorly understood, possibly because its activation involves ER-to-Golgi and nuclear trafficking. Here, we generated an ATF6α/Inositol-requiring kinase 1 (IRE1) dual UPR reporter CHO-K1 cell line and performed an unbiased genome-wide CRISPR/Cas9 mutagenesis screen to systematically profile genetic factors that specifically contribute to ATF6α signalling in the presence and absence of ER stress. The screen identified both anticipated and new candidate genes that regulate ATF6α activation. Among these, calreticulin (CRT), a key ER luminal chaperone, selectively repressed ATF6α signalling: Cells lacking CRT constitutively activated a BiP::sfGFP ATF6α-dependent reporter, had higher BiP levels and an increased rate of trafficking and processing of ATF6α. Purified CRT interacted with the luminal domain of ATF6α in vitro and the two proteins co-immunoprecipitated from cell lysates. CRT depletion exposed a negative feedback loop implicating ATF6α in repressing IRE1 activity basally and overexpression of CRT reversed this repression. Our findings indicate that CRT, beyond its known role as a chaperone, also serves as an ER repressor of ATF6α to selectively regulate one arm of the UPR.

    1. Cancer Biology
    2. Cell Biology
    Alex Weiss, Cassandra D'Amata ... Madeline N Hayes
    Research Article

    High-throughput vertebrate animal model systems for the study of patient-specific biology and new therapeutic approaches for aggressive brain tumors are currently lacking, and new approaches are urgently needed. Therefore, to build a patient-relevant in vivo model of human glioblastoma, we expressed common oncogenic variants including activated human EGFRvIII and PI3KCAH1047R under the control of the radial glial-specific promoter her4.1 in syngeneic tp53 loss-of-function mutant zebrafish. Robust tumor formation was observed prior to 45 days of life, and tumors had a gene expression signature similar to human glioblastoma of the mesenchymal subtype, with a strong inflammatory component. Within early stage tumor lesions, and in an in vivo and endogenous tumor microenvironment, we visualized infiltration of phagocytic cells, as well as internalization of tumor cells by mpeg1.1:EGFP+ microglia/macrophages, suggesting negative regulatory pressure by pro-inflammatory cell types on tumor growth at early stages of glioblastoma initiation. Furthermore, CRISPR/Cas9-mediated gene targeting of master inflammatory transcription factors irf7 or irf8 led to increased tumor formation in the primary context, while suppression of phagocyte activity led to enhanced tumor cell engraftment following transplantation into otherwise immune-competent zebrafish hosts. Altogether, we developed a genetically relevant model of aggressive human glioblastoma and harnessed the unique advantages of zebrafish including live imaging, high-throughput genetic and chemical manipulations to highlight important tumor-suppressive roles for the innate immune system on glioblastoma initiation, with important future opportunities for therapeutic discovery and optimizations.