Short senolytic or senostatic interventions rescue progression of radiation-induced frailty and premature ageing in mice

Abstract

Cancer survivors suffer from progressive frailty, multimorbidity and premature morbidity. We hypothesize that therapy-induced senescence and senescence progression via bystander effects is a significant cause of this premature ageing phenotype. Accordingly, the study addresses the question whether a short anti-senescence intervention is able to block progression of radiation-induced frailty and disability in a pre-clinical setting. Male mice were sub-lethally irradiated at 5 months of age and treated (or not) with either a senolytic drug (Navitoclax or dasatinib + quercetin) for 10 days or with the senostatic metformin for 10 weeks. Follow up was for one year. Treatments commencing within a month after irradiation effectively reduced frailty progression (p<0.05) and improved muscle (p<0.01) and liver (p<0.05) function as well as short-term memory (p<0.05) until advanced age with no need for repeated interventions. Senolytic interventions that started late, after radiation-induced premature frailty was manifest, still had beneficial effects on frailty (p<0.05) and short-term memory (p<0.05). Metformin was similarly effective as senolytics. At therapeutically achievable concentrations metformin acted as a senostatic neither via inhibition of mitochondrial complex I, nor via improvement of mitophagy or mitochondrial function, but by reducing non-mitochondrial ROS production via NOX4 inhibition in senescent cells. Our study suggests that the progression of adverse long-term health and quality-of-life effects of radiation exposure, as experienced by cancer survivors, might be rescued by short-term adjuvant anti-senescence interventions.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files; Source Data files have been provided for all Figures.

Article and author information

Author details

  1. Edward Fielder

    Newcastle University, Newcastle, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2834-8706
  2. Tengfei Wan

    Newcastle University, Newcastle, United Kingdom
    Competing interests
    No competing interests declared.
  3. Ghazaleh Alimohammadiha

    Newcastle University, Newcastle, United Kingdom
    Competing interests
    No competing interests declared.
  4. Abbas Ishaq

    Newcastle University, Newcastle, United Kingdom
    Competing interests
    Abbas Ishaq, Abbas Ishaq is affiliated with Alcyomics Ltd. The author has no financial interests to declare..
  5. Evon Low

    Newcastle University, Newcastle, United Kingdom
    Competing interests
    No competing interests declared.
  6. B Melanie Weigand

    Newcastle University, Newcastle, United Kingdom
    Competing interests
    No competing interests declared.
  7. George Kelly

    Newcastle University, Newcastle, United Kingdom
    Competing interests
    No competing interests declared.
  8. Craig Parker

    Newcastle University, Newcastle, United Kingdom
    Competing interests
    No competing interests declared.
  9. Brigid Griffin

    Newcastle University, Newcastle, United Kingdom
    Competing interests
    No competing interests declared.
  10. Diana Jurk

    Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, United States
    Competing interests
    No competing interests declared.
  11. Viktor I Korolchuk

    Newcastle University, Newcastle, United Kingdom
    Competing interests
    No competing interests declared.
  12. Thomas von Zglinicki

    Newcastle University, Newcastle, United Kingdom
    For correspondence
    t.vonzglinicki@ncl.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5939-0248
  13. Satomi Miwa

    Newcastle University, Newcastle, United Kingdom
    Competing interests
    No competing interests declared.

Funding

Cancer Research UK (C12161/A24009)

  • Thomas von Zglinicki

Biotechnology and Biological Sciences Research Council (BB/S006710/1)

  • Thomas von Zglinicki

UK SPINE Bridge (B06)

  • Thomas von Zglinicki
  • Satomi Miwa

Biotechnology and Biological Sciences Research Council (BH174490)

  • Viktor I Korolchuk

Biotechnology and Biological Sciences Research Council

  • Diana Jurk

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experimentation was performed in compliance with the guiding principles for the care and use of laboratory animals (ARRIVE guidelines). The study was licenced by the UK Home Office (PB048F3A0)

Copyright

© 2022, Fielder et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,859
    views
  • 902
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Edward Fielder
  2. Tengfei Wan
  3. Ghazaleh Alimohammadiha
  4. Abbas Ishaq
  5. Evon Low
  6. B Melanie Weigand
  7. George Kelly
  8. Craig Parker
  9. Brigid Griffin
  10. Diana Jurk
  11. Viktor I Korolchuk
  12. Thomas von Zglinicki
  13. Satomi Miwa
(2022)
Short senolytic or senostatic interventions rescue progression of radiation-induced frailty and premature ageing in mice
eLife 11:e75492.
https://doi.org/10.7554/eLife.75492

Share this article

https://doi.org/10.7554/eLife.75492

Further reading

    1. Cancer Biology
    Jae Hun Shin, Jooyoung Park ... Alfred LM Bothwell
    Research Article

    Metastasis is the leading cause of cancer-related mortality. Paneth cells provide stem cell niche factors in homeostatic conditions, but the underlying mechanisms of cancer stem cell niche development are unclear. Here, we report that Dickkopf-2 (DKK2) is essential for the generation of cancer cells with Paneth cell properties during colon cancer metastasis. Splenic injection of Dkk2 knockout (KO) cancer organoids into C57BL/6 mice resulted in a significant reduction of liver metastases. Transcriptome analysis showed reduction of Paneth cell markers such as lysozymes in KO organoids. Single-cell RNA sequencing analyses of murine metastasized colon cancer cells and patient samples identified the presence of lysozyme positive cells with Paneth cell properties including enhanced glycolysis. Further analyses of transcriptome and chromatin accessibility suggested hepatocyte nuclear factor 4 alpha (HNF4A) as a downstream target of DKK2. Chromatin immunoprecipitation followed by sequencing analysis revealed that HNF4A binds to the promoter region of Sox9, a well-known transcription factor for Paneth cell differentiation. In the liver metastatic foci, DKK2 knockout rescued HNF4A protein levels followed by reduction of lysozyme positive cancer cells. Taken together, DKK2-mediated reduction of HNF4A protein promotes the generation of lysozyme positive cancer cells with Paneth cell properties in the metastasized colon cancers.

    1. Cancer Biology
    2. Computational and Systems Biology
    Nayoung Kim, Sehhoon Park ... Myung-Ju Ahn
    Research Article

    This study investigates the variability among patients with non-small cell lung cancer (NSCLC) in their responses to immune checkpoint inhibitors (ICIs). Recognizing that patients with advanced-stage NSCLC rarely qualify for surgical interventions, it becomes crucial to identify biomarkers that influence responses to ICI therapy. We conducted an analysis of single-cell transcriptomes from 33 lung cancer biopsy samples, with a particular focus on 14 core samples taken before the initiation of palliative ICI treatment. Our objective was to link tumor and immune cell profiles with patient responses to ICI. We discovered that ICI non-responders exhibited a higher presence of CD4+ regulatory T cells, resident memory T cells, and TH17 cells. This contrasts with the diverse activated CD8+ T cells found in responders. Furthermore, tumor cells in non-responders frequently showed heightened transcriptional activity in the NF-kB and STAT3 pathways, suggesting a potential inherent resistance to ICI therapy. Through the integration of immune cell profiles and tumor molecular signatures, we achieved an discriminative power (area under the curve [AUC]) exceeding 95% in identifying patient responses to ICI treatment. These results underscore the crucial importance of the interplay between tumor and immune microenvironment, including within metastatic sites, in affecting the effectiveness of ICIs in NSCLC.