Zinc finger protein Zfp335 controls early T cell development and survival through β-selection-dependent and -independent mechanisms

Abstract

T cell development in the thymus undergoes the process of differentiation, selective proliferation and survival from CD4-CD8- double negative (DN) stage to CD4+CD8+ double positive (DP) stage prior to the formation of CD4+ helper and CD8+ cytolytic T cells ready for circulation. Each developmental stage is tightly regulated by sequentially-operating molecular networks, of which only limited numbers of transcription regulators have been deciphered. Here we identified Zfp335 transcription factor as a new player in the regulatory network controlling thymocyte development in mice. We demonstrate that Zfp335 intrinsically controls DN to DP transition, as T cell-specific deficiency in Zfp335 leads to a substantial accumulation of DN3 along with reduction of DP, CD4+ and CD8+ thymocytes. This developmental blockade at DN stage results from the impaired intracellular TCRβ expression as well as increased susceptibility to apoptosis in thymocytes. Transcriptomic and ChIP-seq analyses revealed a direct regulation of transcription factors Bcl6 and Rorcβ by Zfp335. Importantly, enhanced expression of TCRβ and Bcl6/Rorc restores the developmental defect during DN3 to DN4 transition and improves thymocytes survival, respectively. These findings identify a critical role of Zfp335 in controlling T cell development by maintaining intracellular TCRβ expression-mediated β-selection and independently activating cell survival signaling.

Data availability

The sequencing data presented in this paper are available for download on GEO data repository with accession numbers GEO: GSE184532 and GSE184705.Source Data files have been provided for relevant figures.

The following data sets were generated

Article and author information

Author details

  1. Xin Wang

    Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Anjun Jiao

    Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Lina Sun

    Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Wenhua Li

    Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Biao Yang

    Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Yanhong Su

    Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Renyi Ding

    Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Cangang Zhang

    Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Haiyan Liu

    Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Xiaofeng Yang

    Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Chenming Sun

    Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Baojun Zhang

    Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
    For correspondence
    bj.zhang@mail.xjtu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5972-1011

Funding

National Natural Science Foundation of China (3217080356)

  • Baojun Zhang

National Natural Science Foundation of China (81771673)

  • Baojun Zhang

Major International Joint Research Programme (81820108017)

  • Baojun Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mice were housed in specific-pathogen free conditions by the Xi'an Jiaotong University Division of Laboratory Animal Research. All animal procedures were approved by the Institutional Animal Care and Use Committee of Xi'an Jiaotong University (2017-1012).

Copyright

© 2022, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 925
    views
  • 188
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xin Wang
  2. Anjun Jiao
  3. Lina Sun
  4. Wenhua Li
  5. Biao Yang
  6. Yanhong Su
  7. Renyi Ding
  8. Cangang Zhang
  9. Haiyan Liu
  10. Xiaofeng Yang
  11. Chenming Sun
  12. Baojun Zhang
(2022)
Zinc finger protein Zfp335 controls early T cell development and survival through β-selection-dependent and -independent mechanisms
eLife 11:e75508.
https://doi.org/10.7554/eLife.75508

Share this article

https://doi.org/10.7554/eLife.75508

Further reading

    1. Cell Biology
    Zewei Zhao, Longyun Hu ... Zhonghan Yang
    Research Article

    The induction of adipose thermogenesis plays a critical role in maintaining body temperature and improving metabolic homeostasis to combat obesity. β3-adrenoceptor (β3-AR) is widely recognized as a canonical β-adrenergic G-protein-coupled receptor (GPCR) that plays a crucial role in mediating adipose thermogenesis in mice. Nonetheless, the limited expression of β3-AR in human adipocytes restricts its clinical application. The objective of this study was to identify a GPCR that is highly expressed in human adipocytes and to explore its potential involvement in adipose thermogenesis. Our research findings have demonstrated that the adhesion G-protein-coupled receptor A3 (ADGRA3), an orphan GPCR, plays a significant role in adipose thermogenesis through its constitutively active effects. ADGRA3 exhibited high expression levels in human adipocytes and mouse brown fat. Furthermore, the knockdown of Adgra3 resulted in an exacerbated obese phenotype and a reduction in the expression of thermogenic markers in mice. Conversely, Adgra3 overexpression activated the adipose thermogenic program and improved metabolic homeostasis in mice without exogenous ligand. We found that ADGRA3 facilitates the biogenesis of beige human or mouse adipocytes in vitro. Moreover, hesperetin was identified as a potential agonist of ADGRA3, capable of inducing adipocyte browning and ameliorating insulin resistance in mice. In conclusion, our study demonstrated that the overexpression of constitutively active ADGRA3 or the activation of ADGRA3 by hesperetin can induce adipocyte browning by Gs-PKA-CREB axis. These findings indicate that the utilization of hesperetin and the selective overexpression of ADGRA3 in adipose tissue could serve as promising therapeutic strategies in the fight against obesity.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article Updated

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.