Zinc finger protein Zfp335 controls early T cell development and survival through β-selection-dependent and -independent mechanisms

Abstract

T cell development in the thymus undergoes the process of differentiation, selective proliferation and survival from CD4-CD8- double negative (DN) stage to CD4+CD8+ double positive (DP) stage prior to the formation of CD4+ helper and CD8+ cytolytic T cells ready for circulation. Each developmental stage is tightly regulated by sequentially-operating molecular networks, of which only limited numbers of transcription regulators have been deciphered. Here we identified Zfp335 transcription factor as a new player in the regulatory network controlling thymocyte development in mice. We demonstrate that Zfp335 intrinsically controls DN to DP transition, as T cell-specific deficiency in Zfp335 leads to a substantial accumulation of DN3 along with reduction of DP, CD4+ and CD8+ thymocytes. This developmental blockade at DN stage results from the impaired intracellular TCRβ expression as well as increased susceptibility to apoptosis in thymocytes. Transcriptomic and ChIP-seq analyses revealed a direct regulation of transcription factors Bcl6 and Rorcβ by Zfp335. Importantly, enhanced expression of TCRβ and Bcl6/Rorc restores the developmental defect during DN3 to DN4 transition and improves thymocytes survival, respectively. These findings identify a critical role of Zfp335 in controlling T cell development by maintaining intracellular TCRβ expression-mediated β-selection and independently activating cell survival signaling.

Data availability

The sequencing data presented in this paper are available for download on GEO data repository with accession numbers GEO: GSE184532 and GSE184705.Source Data files have been provided for relevant figures.

The following data sets were generated

Article and author information

Author details

  1. Xin Wang

    Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Anjun Jiao

    Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Lina Sun

    Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Wenhua Li

    Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Biao Yang

    Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Yanhong Su

    Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Renyi Ding

    Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Cangang Zhang

    Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Haiyan Liu

    Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Xiaofeng Yang

    Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Chenming Sun

    Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Baojun Zhang

    Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
    For correspondence
    bj.zhang@mail.xjtu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5972-1011

Funding

National Natural Science Foundation of China (3217080356)

  • Baojun Zhang

National Natural Science Foundation of China (81771673)

  • Baojun Zhang

Major International Joint Research Programme (81820108017)

  • Baojun Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mice were housed in specific-pathogen free conditions by the Xi'an Jiaotong University Division of Laboratory Animal Research. All animal procedures were approved by the Institutional Animal Care and Use Committee of Xi'an Jiaotong University (2017-1012).

Copyright

© 2022, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 920
    views
  • 187
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xin Wang
  2. Anjun Jiao
  3. Lina Sun
  4. Wenhua Li
  5. Biao Yang
  6. Yanhong Su
  7. Renyi Ding
  8. Cangang Zhang
  9. Haiyan Liu
  10. Xiaofeng Yang
  11. Chenming Sun
  12. Baojun Zhang
(2022)
Zinc finger protein Zfp335 controls early T cell development and survival through β-selection-dependent and -independent mechanisms
eLife 11:e75508.
https://doi.org/10.7554/eLife.75508

Share this article

https://doi.org/10.7554/eLife.75508

Further reading

    1. Cell Biology
    Satoshi Ninagawa, Masaki Matsuo ... Kazutoshi Mori
    Research Advance

    How the fate (folding versus degradation) of glycoproteins is determined in the endoplasmic reticulum (ER) is an intriguing question. Monoglucosylated glycoproteins are recognized by lectin chaperones to facilitate their folding, whereas glycoproteins exposing well-trimmed mannoses are subjected to glycoprotein ER-associated degradation (gpERAD); we have elucidated how mannoses are sequentially trimmed by EDEM family members (George et al., 2020; 2021 eLife). Although reglucosylation by UGGT was previously reported to have no effect on substrate degradation, here we directly tested this notion using cells with genetically disrupted UGGT1/2. Strikingly, the results showed that UGGT1 delayed the degradation of misfolded substrates and unstable glycoproteins including ATF6α. An experiment with a point mutant of UGGT1 indicated that the glucosylation activity of UGGT1 was required for the inhibition of early glycoprotein degradation. These and overexpression-based competition experiments suggested that the fate of glycoproteins is determined by a tug-of-war between structure formation by UGGT1 and degradation by EDEMs. We further demonstrated the physiological importance of UGGT1, since ATF6α cannot function properly without UGGT1. Thus, our work strongly suggests that UGGT1 is a central factor in ER protein quality control via the regulation of both glycoprotein folding and degradation.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Senem Ntourmas, Martin Sachs ... Dominic B Bernkopf
    Research Article

    Activation of the Wnt/β-catenin pathway crucially depends on the polymerization of dishevelled 2 (DVL2) into biomolecular condensates. However, given the low affinity of known DVL2 self-interaction sites and its low cellular concentration, it is unclear how polymers can form. Here, we detect oligomeric DVL2 complexes at endogenous protein levels in human cell lines, using a biochemical ultracentrifugation assay. We identify a low-complexity region (LCR4) in the C-terminus whose deletion and fusion decreased and increased the complexes, respectively. Notably, LCR4-induced complexes correlated with the formation of microscopically visible multimeric condensates. Adjacent to LCR4, we mapped a conserved domain (CD2) promoting condensates only. Molecularly, LCR4 and CD2 mediated DVL2 self-interaction via aggregating residues and phenylalanine stickers, respectively. Point mutations inactivating these interaction sites impaired Wnt pathway activation by DVL2. Our study discovers DVL2 complexes with functional importance for Wnt/β-catenin signaling. Moreover, we provide evidence that DVL2 condensates form in two steps by pre-oligomerization via high-affinity interaction sites, such as LCR4, and subsequent condensation via low-affinity interaction sites, such as CD2.