Regulation of protein complex partners as a compensatory mechanism in aneuploid tumors

  1. Gökçe Senger
  2. Stefano Santaguida
  3. Martin H Schaefer  Is a corresponding author
  1. European Institute of Oncology, Italy

Abstract

Aneuploidy, a state of chromosome imbalance, is a hallmark of human tumors, but its role in cancer still remains to be fully elucidated. To understand the consequences of whole-chromosome-level aneuploidies on the proteome, we integrated aneuploidy, transcriptomic and proteomic data from hundreds of TCGA/CPTAC tumor samples. We found a surprisingly large number of expression changes happened on other, non-aneuploid chromosomes. Moreover, we identified an association between those changes and co-complex members of proteins from aneuploid chromosomes. This co-abundance association is tightly regulated for aggregation-prone aneuploid proteins and those involved in a smaller number of complexes. On the other hand, we observe that complexes of the cellular core machinery are under functional selection to maintain their stoichiometric balance in aneuploid tumors. Ultimately, we provide evidence that those compensatory and functional maintenance mechanisms are established through post-translational control and that the degree of success of a tumor to deal with aneuploidy-induced stoichiometric imbalance impacts the activation of cellular protein degradation programs and patient survival.

Data availability

The code performing all analyses in this study is available at https://github.com/SengerG/Coregulation-of-complexes-in-Aneuploidtumors.git

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Gökçe Senger

    Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Stefano Santaguida

    Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1501-6190
  3. Martin H Schaefer

    Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
    For correspondence
    martin.schaefer@ieo.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7503-6364

Funding

Fondazione AIRC (MFAG 21791)

  • Martin H Schaefer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Elana J Fertig, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, United States

Version history

  1. Received: November 12, 2021
  2. Preprint posted: December 9, 2021 (view preprint)
  3. Accepted: May 13, 2022
  4. Accepted Manuscript published: May 16, 2022 (version 1)
  5. Version of Record published: May 26, 2022 (version 2)

Copyright

© 2022, Senger et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,612
    views
  • 279
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gökçe Senger
  2. Stefano Santaguida
  3. Martin H Schaefer
(2022)
Regulation of protein complex partners as a compensatory mechanism in aneuploid tumors
eLife 11:e75526.
https://doi.org/10.7554/eLife.75526

Share this article

https://doi.org/10.7554/eLife.75526

Further reading

    1. Cancer Biology
    2. Cell Biology
    Ian Lorimer
    Insight

    Establishing a zebrafish model of a deadly type of brain tumor highlights the role of the immune system in the early stages of the disease.

    1. Cancer Biology
    Xia Shen, Xiang Peng ... Chen-Ying Liu
    Research Article

    The role of processing bodies (P-bodies) in tumorigenesis and tumor progression is not well understood. Here, we showed that the oncogenes YAP/TAZ promote P-body formation in a series of cancer cell lines. Mechanistically, both transcriptional activation of the P-body-related genes SAMD4A, AJUBA, and WTIP and transcriptional suppression of the tumor suppressor gene PNRC1 are involved in enhancing the effects of YAP/TAZ on P-body formation in colorectal cancer (CRC) cells. By reexpression of PNRC1 or knockdown of P-body core genes (DDX6, DCP1A, and LSM14A), we determined that disruption of P-bodies attenuates cell proliferation, cell migration, and tumor growth induced by overexpression of YAP5SA in CRC. Analysis of a pancancer CRISPR screen database (DepMap) revealed co-dependencies between YAP/TEAD and the P-body core genes and correlations between the mRNA levels of SAMD4A, AJUBA, WTIP, PNRC1, and YAP target genes. Our study suggests that the P-body is a new downstream effector of YAP/TAZ, which implies that reexpression of PNRC1 or disruption of P-bodies is a potential therapeutic strategy for tumors with active YAP.