SARS-CoV2 variant-specific replicating RNA vaccines protect from disease and pathology and reduce viral shedding following challenge with heterologous SARS-CoV2 variants of concern

  1. David W Hawman  Is a corresponding author
  2. Kimberly Meade-White
  3. Jacob Archer
  4. Shanna S Leventhal
  5. Drew Wilson
  6. Carl Shaia
  7. Samantha Randall
  8. Amit P Khandhar
  9. Kyle Krieger
  10. Tien-Ying Hsiang
  11. Michael Gale Jr
  12. Peter Berglund
  13. Deborah Heydenburg Fuller
  14. Heinz Feldmann  Is a corresponding author
  15. Jesse Erasmus  Is a corresponding author
  1. National Institute of Allergy and Infectious Diseases, United States
  2. HDT Bio, United States
  3. University of Washington, United States
  4. The University of Washington, United States

Abstract

Despite mass public health efforts, the SARS-CoV2 pandemic continues as of late-2021 with resurgent case numbers in many parts of the world. The emergence of SARS-CoV2 variants of concern (VoC) and evidence that existing vaccines that were designed to protect from the original strains of SARS-CoV-2 may have reduced potency for protection from infection against these VoC is driving continued development of second generation vaccines that can protect against multiple VoC. In this report, we evaluated an alphavirus-based replicating RNA vaccine expressing Spike proteins from the original SARS-CoV-2 Alpha strain and recent VoCs delivered in vivo via a lipid inorganic nanoparticle. Vaccination of both mice and Syrian Golden hamsters showed that vaccination induced potent neutralizing titers against each homologous VoC but reduced neutralization against heterologous challenges. Vaccinated hamsters challenged with homologous SARS-CoV2 variants exhibited complete protection from infection. In addition, vaccinated hamsters challenged with heterologous SARS-CoV-2 variants exhibited significantly reduced shedding of infectious virus. Our data demonstrate that this vaccine platform can be updated to target emergent VoCs, elicits significant protective immunity against SARS-CoV2 variants and supports continued development of this platform.

Data availability

All data generated or analyzed during this study are included in the figures and supporting files

Article and author information

Author details

  1. David W Hawman

    Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Hamilton, United States
    For correspondence
    david.hawman@nih.gov
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8233-8176
  2. Kimberly Meade-White

    Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Hamilton, United States
    Competing interests
    No competing interests declared.
  3. Jacob Archer

    HDT Bio, Seattle, United States
    Competing interests
    Jacob Archer, is a consultant for InBios.
  4. Shanna S Leventhal

    Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Hamilton, United States
    Competing interests
    No competing interests declared.
  5. Drew Wilson

    Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Hamilton, United States
    Competing interests
    No competing interests declared.
  6. Carl Shaia

    Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, United States
    Competing interests
    No competing interests declared.
  7. Samantha Randall

    Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
  8. Amit P Khandhar

    HDT Bio, Seattle, United States
    Competing interests
    Amit P Khandhar, has equity interest in HDT Bio. Is a co-inventors on U.S. patent application no. 62/993,307 Compositions and methods for delivery of RNA" pertaining to the LION formulation.".
  9. Kyle Krieger

    HDT Bio, Seattle, United States
    Competing interests
    No competing interests declared.
  10. Tien-Ying Hsiang

    Department of Immunology, The University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
  11. Michael Gale Jr

    Department of Immunology, University of Washington, Seattle, United States
    Competing interests
    Michael Gale, has equity interest in HDT Bio..
  12. Peter Berglund

    HDT Bio, Seattle, United States
    Competing interests
    Peter Berglund, has equity interest in HDT Bio. Is a consultant for Arcturus, Sensei, and Next Phase..
  13. Deborah Heydenburg Fuller

    Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    Deborah Heydenburg Fuller, has equity interest in HDT Bio. Is a consultant for Gerson Lehrman Group, Orlance, Abacus Bioscience, Neoleukin Therapeutics..
  14. Heinz Feldmann

    Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Hamilton, United States
    For correspondence
    feldmannh@niaid.nih.gov
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9448-8227
  15. Jesse Erasmus

    HDT Bio, Seattle, United States
    For correspondence
    jesse.erasmus@hdt.bio
    Competing interests
    Jesse Erasmus, has equity interest in HDT Bio. Is a consultant for InBios. Is a co-inventors on U.S. patent application no. 62/993,307 Compositions and methods for delivery of RNA" pertaining to the LION formulation.".
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1612-2697

Funding

National Institute of Allergy and Infectious Diseases

  • Michael Gale Jr
  • Jesse Erasmus

Division of Intramural Research, National Institute of Allergy and Infectious Diseases

  • David W Hawman
  • Kimberly Meade-White
  • Shanna S Leventhal
  • Drew Wilson
  • Carl Shaia
  • Heinz Feldmann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Tomohiro Kurosaki, Osaka University, Japan

Ethics

Animal experimentation: Animal experiments were approved by the corresponding institutional animal care and use committee and performed by experienced personnel under veterinary oversight (Protocol #2020-63).

Version history

  1. Received: November 13, 2021
  2. Preprint posted: December 13, 2021 (view preprint)
  3. Accepted: February 17, 2022
  4. Accepted Manuscript published: February 22, 2022 (version 1)
  5. Version of Record published: April 5, 2022 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,322
    views
  • 291
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David W Hawman
  2. Kimberly Meade-White
  3. Jacob Archer
  4. Shanna S Leventhal
  5. Drew Wilson
  6. Carl Shaia
  7. Samantha Randall
  8. Amit P Khandhar
  9. Kyle Krieger
  10. Tien-Ying Hsiang
  11. Michael Gale Jr
  12. Peter Berglund
  13. Deborah Heydenburg Fuller
  14. Heinz Feldmann
  15. Jesse Erasmus
(2022)
SARS-CoV2 variant-specific replicating RNA vaccines protect from disease and pathology and reduce viral shedding following challenge with heterologous SARS-CoV2 variants of concern
eLife 11:e75537.
https://doi.org/10.7554/eLife.75537

Share this article

https://doi.org/10.7554/eLife.75537

Further reading

    1. Immunology and Inflammation
    Kelsey A Hauser, Christina N Garvey ... Leon Grayfer
    Research Article

    Global amphibian declines are compounded by deadly disease outbreaks caused by the chytrid fungus, Batrachochytrium dendrobatidis (Bd). Much has been learned about the roles of amphibian skin-produced antimicrobial components and microbiomes in controlling Bd, yet almost nothing is known about the roles of skin-resident immune cells in anti-Bd defenses. Mammalian mast cells reside within and serve as key immune sentinels in barrier tissues like skin. Accordingly, we investigated the roles of Xenopus laevis frog mast cells during Bd infections. Our findings indicate that enrichment of X. laevis skin mast cells confers anti-Bd protection and ameliorates the inflammation-associated skin damage caused by Bd infection. This includes a significant reduction in infiltration of Bd-infected skin by neutrophils, promoting mucin content within cutaneous mucus glands, and preventing Bd-mediated changes to skin microbiomes. Mammalian mast cells are known for their production of the pleiotropic interleukin-4 (IL4) cytokine and our findings suggest that the X. laevis IL4 plays a key role in manifesting the effects seen following cutaneous mast cell enrichment. Together, this work underscores the importance of amphibian skin-resident immune cells in anti-Bd defenses and illuminates a novel avenue for investigating amphibian host–chytrid pathogen interactions.

    1. Immunology and Inflammation
    Xiaozhuo Yu, Wen Zhou ... Yanhong Ji
    Research Article

    The evolutionary conservation of non-core RAG regions suggests significant roles that might involve quantitative or qualitative alterations in RAG activity. Off-target V(D)J recombination contributes to lymphomagenesis and is exacerbated by RAG2’ C-terminus absence in Tp53−/− mice thymic lymphomas. However, the genomic stability effects of non-core regions from both Rag1c/c and Rag2c/c in BCR-ABL1+ B-lymphoblastic leukemia (BCR-ABL1+ B-ALL), the characteristics, and mechanisms of non-core regions in suppressing off-target V(D)J recombination remain unclear. Here, we established three mouse models of BCR-ABL1+ B-ALL in mice expressing full-length RAG (Ragf/f), core RAG1 (Rag1c/c), and core RAG2 (Rag2c/c). The Ragc/c (Rag1c/c and Rag2c/c) leukemia cells exhibited greater malignant tumor characteristics compared to Ragf/f cells. Additionally, Ragc/c cells showed higher frequency of off-target V(D)J recombination and oncogenic mutations than Ragf/f. We also revealed decreased RAG cleavage accuracy in Ragc/c cells and a smaller recombinant size in Rag1c/c cells, which could potentially exacerbate off-target V(D)J recombination in Ragc/c cells. In conclusion, these findings indicate that the non-core RAG regions, particularly the non-core region of RAG1, play a significant role in preserving V(D)J recombination precision and genomic stability in BCR-ABL1+ B-ALL.