The decrotonylase FoSir5 facilitates mitochondrial metabolic state switching in conidial germination of Fusarium oxysporum
Abstract
Fusarium oxysporum is one of the most important pathogenic fungi with a broad range of plant and animal hosts. The first key step of its infection cycle is conidial germination, but there is limited information available on the molecular events supporting this process. We show here that germination is accompanied by a sharp decrease in expression of FoSir5, an ortholog of the human lysine deacetylase SIRT5. We observe that FoSir5 decrotonylates a subunit of the fungal pyruvate dehydrogenase complex (FoDLAT) at K148, resulting in inhibition of the activity of the complex in mitochondria. Moreover, FoSir5 decrotonylates histone H3K18, leading to a downregulation of transcripts encoding enzymes of aerobic respiration pathways. Thus, the activity of FoSir5 coordinates regulation in different organelles to steer metabolic flux through respiration. As ATP content is positively related to fungal germination, we propose that FoSir5 negatively modulates conidial germination in F. oxysporum through its metabolic impact. These findings provide insights into the multifaceted roles of decrotonylation, catalysed by FoSir5, that support conidial germination in F. oxysporum.
Data availability
The RNA-seq raw reads are available in NCBI Sequence Read Archive (SRA) database with the accession number of PRJNA687117.
Article and author information
Author details
Funding
National Natural Science Foundation of China (31972213)
- Wenxing Liang
National Natural Science Foundation of China (32102149)
- Ning Zhang
Shandong Provincial Natural Science Foundation (ZR2019BC070)
- Ning Zhang
Shandong Provincial Natural Science Foundation (ZR2020KC003)
- Wenxing Liang
Shandong Province 'Double-Hundred Talen Plan' (WST2018008)
- Wenxing Liang
Taishan Scholar Construction Foundation of Shandong Province (tshw20130963)
- Wenxing Liang
Wellcome Trust (200873/Z/16/Z)
- Xueyuan Pei
- Ben F Luisi
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2021, Zhang et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,255
- views
-
- 382
- downloads
-
- 26
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 26
- citations for umbrella DOI https://doi.org/10.7554/eLife.75583