The normalization model predicts responses during object-based attention in the human visual cortex

  1. Narges Doostani
  2. Gholam-Ali Hossein-Zadeh
  3. Maryam Vaziri-Pashkam  Is a corresponding author
  1. Institute for Research in Fundamental Sciences, Islamic Republic of Iran
  2. University of Tehran, Islamic Republic of Iran
  3. National Institute of Mental Health, United States

Abstract

Divisive normalization of the neural responses by the activity of the neighboring neurons has been proposed as a fundamental operation in the nervous system based on its success in predicting neural responses recorded in primate electrophysiology studies. Nevertheless, experimental evidence for the existence of this operation in the human brain is still scant. Here, using functional MRI, we explored the role of normalization across the visual hierarchy in the human visual cortex. Using stimuli form the two categories of human bodies and houses, we presented objects in isolation or in clutter and asked participants to attend or ignore the stimuli. Focusing on the primary visual area V1, the object-selective regions LO and pFs, the body-selective region EBA, and the scene-selective region PPA, we first modeled single-voxel responses using a weighted sum, a weighted average, and a normalization model and demonstrated that although the weighted sum and weighted average models also made acceptable predictions in some conditions, the response to multiple stimuli could generally be better described by a model that takes normalization into account. We then explored the observed effects of attention on cortical responses and demonstrated that these effects were predicted by the normalization model, but not by the weighted sum or the weighted average models. Our results thus provide evidence that the normalization model can predict responses to objects across shifts of visual attention, suggesting the role of normalization as a fundamental operation in the human brain.

Data availability

fMRI data have been deposited in OSF under DOI 10.17605/OSF.IO/8CH9Q.

The following data sets were generated

Article and author information

Author details

  1. Narges Doostani

    School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Islamic Republic of Iran
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5775-6595
  2. Gholam-Ali Hossein-Zadeh

    School of Electrical and Computer Engineering, University of Tehran, Tehran, Islamic Republic of Iran
    Competing interests
    The authors declare that no competing interests exist.
  3. Maryam Vaziri-Pashkam

    Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, United States
    For correspondence
    maryam.vaziri-pashkam@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1830-2501

Funding

National Institutes of Health (ZIA-MH002035)

  • Maryam Vaziri-Pashkam

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants gave written consent prior to their participation in the experiment. Imaging was performed according to safety guidelines approved by the ethics committee of the Institute for Research in Fundamental Sciences with the reference number 98/60.1/2184.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,097
    views
  • 148
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Narges Doostani
  2. Gholam-Ali Hossein-Zadeh
  3. Maryam Vaziri-Pashkam
(2023)
The normalization model predicts responses during object-based attention in the human visual cortex
eLife 12:e75726.
https://doi.org/10.7554/eLife.75726

Share this article

https://doi.org/10.7554/eLife.75726

Further reading

    1. Cell Biology
    2. Neuroscience
    Luting Yang, Chunqing Hu ... Yaping Yan
    Research Article

    Reactive astrocytes play critical roles in the occurrence of various neurological diseases such as multiple sclerosis. Activation of astrocytes is often accompanied by a glycolysis-dominant metabolic switch. However, the role and molecular mechanism of metabolic reprogramming in activation of astrocytes have not been clarified. Here, we found that PKM2, a rate-limiting enzyme of glycolysis, displayed nuclear translocation in astrocytes of EAE (experimental autoimmune encephalomyelitis) mice, an animal model of multiple sclerosis. Prevention of PKM2 nuclear import by DASA-58 significantly reduced the activation of mice primary astrocytes, which was observed by decreased proliferation, glycolysis and secretion of inflammatory cytokines. Most importantly, we identified the ubiquitination-mediated regulation of PKM2 nuclear import by ubiquitin ligase TRIM21. TRIM21 interacted with PKM2, promoted its nuclear translocation and stimulated its nuclear activity to phosphorylate STAT3, NF-κB and interact with c-myc. Further single-cell RNA sequencing and immunofluorescence staining demonstrated that TRIM21 expression was upregulated in astrocytes of EAE. TRIM21 overexpressing in mice primary astrocytes enhanced PKM2-dependent glycolysis and proliferation, which could be reversed by DASA-58. Moreover, intracerebroventricular injection of a lentiviral vector to knockdown TRIM21 in astrocytes or intraperitoneal injection of TEPP-46, which inhibit the nuclear translocation of PKM2, effectively decreased disease severity, CNS inflammation and demyelination in EAE. Collectively, our study provides novel insights into the pathological function of nuclear glycolytic enzyme PKM2 and ubiquitination-mediated regulatory mechanism that are involved in astrocyte activation. Targeting this axis may be a potential therapeutic strategy for the treatment of astrocyte-involved neurological disease.

    1. Neuroscience
    Felix Michaud, Ruggiero Francavilla ... Lisa Topolnik
    Research Article

    Alzheimer’s disease (AD) leads to progressive memory decline, and alterations in hippocampal function are among the earliest pathological features observed in human and animal studies. GABAergic interneurons (INs) within the hippocampus coordinate network activity, among which type 3 interneuron-specific (I-S3) cells expressing vasoactive intestinal polypeptide and calretinin play a crucial role. These cells provide primarily disinhibition to principal excitatory cells (PCs) in the hippocampal CA1 region, regulating incoming inputs and memory formation. However, it remains unclear whether AD pathology induces changes in the activity of I-S3 cells, impacting the hippocampal network motifs. Here, using young adult 3xTg-AD mice, we found that while the density and morphology of I-S3 cells remain unaffected, there were significant changes in their firing output. Specifically, I-S3 cells displayed elongated action potentials and decreased firing rates, which was associated with a reduced inhibition of CA1 INs and their higher recruitment during spatial decision-making and object exploration tasks. Furthermore, the activation of CA1 PCs was also impacted, signifying early disruptions in CA1 network functionality. These findings suggest that altered firing patterns of I-S3 cells might initiate early-stage dysfunction in hippocampal CA1 circuits, potentially influencing the progression of AD pathology.