Association analyses of host genetics, root-colonizing microbes, and plant phenotypes under different nitrogen conditions in maize

Abstract

The root-associated microbiome (rhizobiome) affects plant health, stress tolerance, and nutrient use efficiency. However, it remains unclear to what extent the composition of the rhizobiome is governed by intraspecific variation in host plant genetics in the field and the degree to which host plant selection can reshape the composition of the rhizobiome. Here we quantify the rhizosphere microbial communities associated with a replicated diversity panel of 230 maize (Zea mays L.) genotypes grown in agronomically relevant conditions under high N (+N) and low N (-N) treatments. We analyze the maize rhizobiome in terms of 150 abundant and consistently reproducible microbial groups and we show that the abundance of many root-associated microbes is explainable by natural genetic variation in the host plant, with a greater proportion of microbial variance attributable to plant genetic variation in -N conditions. Population genetic approaches identify signatures of purifying selection in the maize genome associated with the abundance of several groups of microbes in the maize rhizobiome. Genome-wide association study was conducted using the abundance of microbial groups as rhizobiome traits, and identified n = 622 plant loci that are linked to the abundance of n = 104 microbial groups in the maize rhizosphere. In 62/104 cases, which is more than expected by chance, the abundance of these same microbial groups was correlated with variation in plant vigor indicators derived from high throughput phenotyping of the same field experiment. We provide comprehensive datasets about the three-way interaction of host genetics, microbe abundance, and plant performance under two N treatments to facilitate targeted experiments towards harnessing the full potential of root-associated microbial symbionts in maize production.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Michael A Meier

    Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Gen Xu

    Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Martha G Lopez-Guerrero

    Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Guangyong Li

    Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Christine Smith

    Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Brandi Sigmon

    Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Joshua R Herr

    Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3425-292X
  8. James R Alfano

    Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Yufeng Ge

    Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. James C Schnable

    Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, United States
    For correspondence
    schnable@unl.edu
    Competing interests
    The authors declare that no competing interests exist.
  11. Jinliang Yang

    Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, United States
    For correspondence
    jinliang.yang@unl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0999-3518

Funding

National Science Foundation (Cooperative Agreement OIA-1557417)

  • Jinliang Yang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Meier et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,193
    views
  • 821
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael A Meier
  2. Gen Xu
  3. Martha G Lopez-Guerrero
  4. Guangyong Li
  5. Christine Smith
  6. Brandi Sigmon
  7. Joshua R Herr
  8. James R Alfano
  9. Yufeng Ge
  10. James C Schnable
  11. Jinliang Yang
(2022)
Association analyses of host genetics, root-colonizing microbes, and plant phenotypes under different nitrogen conditions in maize
eLife 11:e75790.
https://doi.org/10.7554/eLife.75790

Share this article

https://doi.org/10.7554/eLife.75790

Further reading

    1. Genetics and Genomics
    Shek Man Chim, Kristen Howell ... Regeneron Genetics Center
    Research Article

    Recent studies have revealed a role for zinc in insulin secretion and glucose homeostasis. Randomized placebo-controlled zinc supplementation trials have demonstrated improved glycemic traits in patients with type II diabetes (T2D). Moreover, rare loss-of-function variants in the zinc efflux transporter SLC30A8 reduce T2D risk. Despite this accumulated evidence, a mechanistic understanding of how zinc influences systemic glucose homeostasis and consequently T2D risk remains unclear. To further explore the relationship between zinc and metabolic traits, we searched the exome database of the Regeneron Genetics Center-Geisinger Health System DiscovEHR cohort for genes that regulate zinc levels and associate with changes in metabolic traits. We then explored our main finding using in vitro and in vivo models. We identified rare loss-of-function (LOF) variants (MAF <1%) in Solute Carrier Family 39, Member 5 (SLC39A5) associated with increased circulating zinc (p=4.9 × 10-4). Trans-ancestry meta-analysis across four studies exhibited a nominal association of SLC39A5 LOF variants with decreased T2D risk. To explore the mechanisms underlying these associations, we generated mice lacking Slc39a5. Slc39a5-/- mice display improved liver function and reduced hyperglycemia when challenged with congenital or diet-induced obesity. These improvements result from elevated hepatic zinc levels and concomitant activation of hepatic AMPK and AKT signaling, in part due to zinc-mediated inhibition of hepatic protein phosphatase activity. Furthermore, under conditions of diet-induced non-alcoholic steatohepatitis (NASH), Slc39a5-/- mice display significantly attenuated fibrosis and inflammation. Taken together, these results suggest SLC39A5 as a potential therapeutic target for non-alcoholic fatty liver disease (NAFLD) due to metabolic derangements including T2D.

    1. Developmental Biology
    2. Genetics and Genomics
    Subhradip Das, Sushmitha Hegde ... Girish S Ratnaparkhi
    Research Article

    Repurposing of pleiotropic factors during execution of diverse cellular processes has emerged as a regulatory paradigm. Embryonic development in metazoans is controlled by maternal factors deposited in the egg during oogenesis. Here, we explore maternal role(s) of Caspar (Casp), the Drosophila orthologue of human Fas-associated factor-1 (FAF1) originally implicated in host-defense as a negative regulator of NF-κB signaling. Maternal loss of either Casp or it’s protein partner, transitional endoplasmic reticulum 94 (TER94) leads to partial embryonic lethality correlated with aberrant centrosome behavior, cytoskeletal abnormalities, and defective gastrulation. Although ubiquitously distributed, both proteins are enriched in the primordial germ cells (PGCs), and in keeping with the centrosome problems, mutant embryos display a significant reduction in the PGC count. Moreover, the total number of pole buds is directly proportional to the level of Casp. Consistently, it’s ‘loss’ and ‘gain’ results in respective reduction and increase in the Oskar protein levels, the master determinant of PGC fate. To elucidate this regulatory loop, we analyzed several known components of mid-blastula transition and identify the translational repressor Smaug, a zygotic regulator of germ cell specification, as a potential critical target. We present a detailed structure-function analysis of Casp aimed at understanding its novel involvement during PGC development.