Human visual gamma for color stimuli

  1. Benjamin J Stauch  Is a corresponding author
  2. Alina Peter
  3. Isabelle Ehrlich
  4. Zora Nolte
  5. Pascal Fries  Is a corresponding author
  1. Ernst Strüngmann Institute for Neuroscience, Germany
  2. Goethe University Frankfurt, Germany

Abstract

Strong gamma-band oscillations in primate early visual cortex can be induced by homogeneous color surfaces (Peter et al., 2019; Shirhatti and Ray, 2018). Compared to other hues, particularly strong gamma oscillations have been reported for red stimuli. However, precortical color processing and the resultant strength of input to V1 has often not been fully controlled for. Therefore, stronger responses to red might be due to differences in V1 input strength. We presented stimuli that had equal luminance and cone contrast levels in a color coordinate system based on responses of the lateral geniculate nucleus, the main input source for area V1. With these stimuli, we recorded magnetoencephalography in 30 human participants. We found gamma oscillations in early visual cortex which, contrary to previous reports, did not differ between red and green stimuli of equal L-M cone contrast. Notably, blue stimuli with contrast exclusively on the S‑cone axis induced very weak gamma responses, as well as smaller event-related fields and poorer change-detection performance. The strength of human color gamma responses for stimuli on the L-M axis could be well explained by L-M cone contrast and did not show a clear red bias when L-M cone contrast was properly equalized.

Data availability

Custom preprocessing code, per-trial data and code for statistical analyses are available at https://doi.org/10.5281/zenodo.5578940.

The following data sets were generated

Article and author information

Author details

  1. Benjamin J Stauch

    Ernst Strüngmann Institute for Neuroscience, Frankfurt, Germany
    For correspondence
    benjamin.stauch@esi-frankfurt.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4484-813X
  2. Alina Peter

    Ernst Strüngmann Institute for Neuroscience, Frankfurt, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8497-6235
  3. Isabelle Ehrlich

    Department of Psychology, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    No competing interests declared.
  4. Zora Nolte

    Ernst Strüngmann Institute for Neuroscience, Frankfurt, Germany
    Competing interests
    No competing interests declared.
  5. Pascal Fries

    Ernst Strüngmann Institute for Neuroscience, Frankfurt, Germany
    For correspondence
    pascal.fries@esi-frankfurt.de
    Competing interests
    Pascal Fries, has a patent on thin-film electrodes (US20170181707A1) and is beneficiary of a respective license contract on thin-film electrodes with Blackrock Microsystems LLC (Salt Lake City, UT). Is member of the Scientific Technical Advisory Board of CorTec GmbH (Freiburg, Germany), and managing director of Brain Science GmbH (Frankfurt am Main, Germany). The authors declare no further competing interests..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4270-1468

Funding

Deutsche Forschungsgemeinschaft (FOR 1847 FR2557/2-1)

  • Pascal Fries

Deutsche Forschungsgemeinschaft (FR2557/5-1-CORNET)

  • Pascal Fries

Deutsche Forschungsgemeinschaft (FR2557/7-1 DualStreams)

  • Pascal Fries

European Union (FP7-604102-HBP)

  • Pascal Fries

International Max Planck Research School for Neural Circuits (open access funding)

  • Benjamin J Stauch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Laura L Colgin, University of Texas at Austin, United States

Ethics

Human subjects: Subjects gave written informed consent. The study was approved by the ethics committee of the medical faculty of the Goethe University Frankfurt (Resolution E 36/18).

Version history

  1. Preprint posted: November 22, 2021 (view preprint)
  2. Received: December 3, 2021
  3. Accepted: May 6, 2022
  4. Accepted Manuscript published: May 9, 2022 (version 1)
  5. Version of Record published: May 20, 2022 (version 2)

Copyright

© 2022, Stauch et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,178
    views
  • 395
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benjamin J Stauch
  2. Alina Peter
  3. Isabelle Ehrlich
  4. Zora Nolte
  5. Pascal Fries
(2022)
Human visual gamma for color stimuli
eLife 11:e75897.
https://doi.org/10.7554/eLife.75897

Share this article

https://doi.org/10.7554/eLife.75897

Further reading

    1. Cell Biology
    2. Neuroscience
    Marcos Moreno-Aguilera, Alba M Neher ... Carme Gallego
    Research Article Updated

    Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.