Genetically controlled mtDNA deletions prevent ROS damage by arresting oxidative phosphorylation

  1. Simon Stenberg
  2. Jing Li
  3. Arne B Gjuvsland
  4. Karl Persson
  5. Erik Demitz-Helin
  6. Carles González Peña
  7. Jia-Xing Yue
  8. Ciaran Gilchrist
  9. Timmy Ärengård
  10. Payam Ghiaci
  11. Lisa Larsson-Berghund
  12. Martin Zackrisson
  13. Silvana Smits
  14. Johan Hallin
  15. Johanna L Höög
  16. Mikael Molin
  17. Gianni Liti
  18. Stig W Omholt  Is a corresponding author
  19. Jonas Warringer  Is a corresponding author
  1. University of Gothenburg, Sweden
  2. Sun Yat-sen University Cancer Center, China
  3. Norwegian University of Life Sciences, Norway
  4. University of Gothenburg, Spain
  5. Chalmers University of Technology, Sweden
  6. Université Côte d'Azur, CNRS, INSERM, IRCAN, France

Abstract

Deletion of mitochondrial DNA in eukaryotes is currently attributed to rare accidental events associated with mitochondrial replication or repair of double-strand breaks. We report the discovery that yeast cells arrest harmful intramitochondrial superoxide production by shutting down respiration through genetically controlled deletion of mitochondrial oxidative phosphorylation genes. We show that this process critically involves the antioxidant enzyme superoxide dismutase 2 and two-way mitochondrial-nuclear communication through Rtg2 and Rtg3. While mitochondrial DNA homeostasis is rapidly restored after cessation of a short-term superoxide stress, long-term stress causes maladaptive persistence of the deletion process, leading to complete annihilation of the cellular pool of intact mitochondrial genomes and irrevocable loss of respiratory ability. This shows that oxidative stress-induced mitochondrial impairment may be under strict regulatory control. If the results extend to human cells, the results may prove to be of etiological as well as therapeutic importance with regard to age-related mitochondrial impairment and disease.

Data availability

Sequence data that support the findings of this study have been deposited in Sequencing Read Archive (SRA) with the accession codes PRJNA622836.The growth phenotyping code can be found at https://github.com/Scan-o-Matic/scanomatic.git, the simulation code at https://github.com/HelstVadsom/GenomeAdaptation.git and the imaging code at https://github.com/CamachoDejay/SStenberg_3Dyeast_tools.The authors declare that all other data supporting the findings of this study are available within the paper as Supplemental Information Data S1-S30, which can be previewed at https://data.mendeley.com/datasets/mvx7t7rw2d/draft?a=95381e47-dc80-47af-85ab-e0478912a209.

The following data sets were generated

Article and author information

Author details

  1. Simon Stenberg

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Jing Li

    State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Arne B Gjuvsland

    Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
    Competing interests
    The authors declare that no competing interests exist.
  4. Karl Persson

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Erik Demitz-Helin

    Department of Chemistry and Molecular Biology, University of Gothenburg, erikdemitzhelin, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Carles González Peña

    Department of Chemistry and Molecular Biology, University of Gothenburg, Argentona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7771-7988
  7. Jia-Xing Yue

    State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2122-9221
  8. Ciaran Gilchrist

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  9. Timmy Ärengård

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  10. Payam Ghiaci

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  11. Lisa Larsson-Berghund

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  12. Martin Zackrisson

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  13. Silvana Smits

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  14. Johan Hallin

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  15. Johanna L Höög

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2162-3816
  16. Mikael Molin

    Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3903-8503
  17. Gianni Liti

    Institute for Research on Cancer and Aging, Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2318-0775
  18. Stig W Omholt

    Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
    For correspondence
    Stig.omholt@ntnu.no
    Competing interests
    The authors declare that no competing interests exist.
  19. Jonas Warringer

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    For correspondence
    jonas.warringer@cmb.gu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6144-2740

Funding

Vetenskapsrådet (2014-6547)

  • Jonas Warringer

Agence Nationale de la Recherche (ANR-13-BSV6-0006-01)

  • Gianni Liti

Agence Nationale de la Recherche (ANR-15-IDEX-01)

  • Gianni Liti

Agence Nationale de la Recherche (ANR-16-CE12-0019)

  • Gianni Liti

Agence Nationale de la Recherche (ANR-18-CE12-0004)

  • Gianni Liti

Human Frontiers Science Program (LT000182/2019-L)

  • Johan Hallin

Vetenskapsrådet (2014-4605)

  • Jonas Warringer

Vetenskapsrådet (2015-05427)

  • Mikael Molin

Vetenskapsrådet (2018-03638)

  • Mikael Molin

Vetenskapsrådet (2018-03453)

  • Johanna L Höög

Cancerfonden (2017-778)

  • Mikael Molin

Norges Forskningsråd (178901/V30)

  • Stig W Omholt

Norges Forskningsråd (222364/F20)

  • Stig W Omholt

Agence Nationale de la Recherche (ANR-11-LABX-0028-01)

  • Gianni Liti

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Stenberg et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,837
    views
  • 801
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Simon Stenberg
  2. Jing Li
  3. Arne B Gjuvsland
  4. Karl Persson
  5. Erik Demitz-Helin
  6. Carles González Peña
  7. Jia-Xing Yue
  8. Ciaran Gilchrist
  9. Timmy Ärengård
  10. Payam Ghiaci
  11. Lisa Larsson-Berghund
  12. Martin Zackrisson
  13. Silvana Smits
  14. Johan Hallin
  15. Johanna L Höög
  16. Mikael Molin
  17. Gianni Liti
  18. Stig W Omholt
  19. Jonas Warringer
(2022)
Genetically controlled mtDNA deletions prevent ROS damage by arresting oxidative phosphorylation
eLife 11:e76095.
https://doi.org/10.7554/eLife.76095

Share this article

https://doi.org/10.7554/eLife.76095

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    Sarah De Beuckeleer, Tim Van De Looverbosch ... Winnok H De Vos
    Research Article

    Induced pluripotent stem cell (iPSC) technology is revolutionizing cell biology. However, the variability between individual iPSC lines and the lack of efficient technology to comprehensively characterize iPSC-derived cell types hinder its adoption in routine preclinical screening settings. To facilitate the validation of iPSC-derived cell culture composition, we have implemented an imaging assay based on cell painting and convolutional neural networks to recognize cell types in dense and mixed cultures with high fidelity. We have benchmarked our approach using pure and mixed cultures of neuroblastoma and astrocytoma cell lines and attained a classification accuracy above 96%. Through iterative data erosion, we found that inputs containing the nuclear region of interest and its close environment, allow achieving equally high classification accuracy as inputs containing the whole cell for semi-confluent cultures and preserved prediction accuracy even in very dense cultures. We then applied this regionally restricted cell profiling approach to evaluate the differentiation status of iPSC-derived neural cultures, by determining the ratio of postmitotic neurons and neural progenitors. We found that the cell-based prediction significantly outperformed an approach in which the population-level time in culture was used as a classification criterion (96% vs 86%, respectively). In mixed iPSC-derived neuronal cultures, microglia could be unequivocally discriminated from neurons, regardless of their reactivity state, and a tiered strategy allowed for further distinguishing activated from non-activated cell states, albeit with lower accuracy. Thus, morphological single-cell profiling provides a means to quantify cell composition in complex mixed neural cultures and holds promise for use in the quality control of iPSC-derived cell culture models.

    1. Cell Biology
    Joan Chang, Adam Pickard ... Karl E Kadler
    Research Article

    Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis. Cells lacking VPS33B secrete soluble collagen-I protomers but were deficient in fibril formation, thus secretion and assembly are separately controlled. Overexpression of VPS33B led to loss of fibril rhythmicity and overabundance of fibrils, which was mediated through integrin α11β1. Endocytic recycling of collagen-I was enhanced in human fibroblasts isolated from idiopathic pulmonary fibrosis, where VPS33B and integrin α11 subunit were overexpressed at the fibrogenic front; this correlation between VPS33B, integrin α11 subunit, and abnormal collagen deposition was also observed in samples from patients with chronic skin wounds. In conclusion, our study showed that circadian-regulated endocytic recycling is central to homeostatic assembly of collagen fibrils and is disrupted in diseases.