Parasites: Eviction notice served on Toxoplasma
Cells have a variety of defense mechanisms for eliminating parasites, bacteria and other pathogens. To evade eviction, some of these pathogens sequester themselves inside structures called vacuoles once they are inside the cell. This allows the pathogens to grow ‘rent-free’, scavenging food from the cytosol without triggering the many ‘trip wires’ that lie immediately beyond the vacuole.
Many parasites rely on this strategy to survive, including Toxoplasma gondii, the microorganism that causes toxoplasmosis. When T. gondii is ingested by a human or other warm-blooded animal, the parasite invades cells lining the small intestine, using the plasma membrane of the cells to form the membrane of the vacuole (Figure 1; Suss-Toby et al., 1996). Once inside, the parasite starts to divide and mature into a new form that then gets released via a process called egress; the freshly egressed parasite then seeks out new cells to invade and quickly spreads throughout the body. T. gondii is considered one of the world’s most successful parasites because, once fully developed, it can infect virtually any cell with a nucleus. So, how does the host’s immune system remove this unauthorized occupant?

A new way of evicting Toxoplasma gondii from cells.
In resting cells, T. gondii (green) creates a vacuole surrounded by a membrane, inside which it can replicate and grow without being destroyed by the immune system (left). However, when the immune system stimulates the cell with a protein called interferon gamma (IFNγ; right), multiple genes are activated, including a gene called RARRES3 which codes for a phospholipase enzyme and is regulated by a transcription factor called IRF1. Rinkenberger et al. show that RARRES3 restricts vacuolar growth and causes T. gondii to prematurely exit the cell.
Image credit: Figure created using BioRender.com.
Most of the immune responses against T. gondii are regulated by a protein messenger called interferon gamma (IFNγ), which causes infected cells to transcribe hundreds of genes coding for proteins that stop the parasite from replicating (Pfefferkorn et al., 1986; Suzuki et al., 1988; Schoggins, 2019). In mice, IFNγ activates two sets of genes: one set codes for immunity-related GTPases (IRGs), and the other codes for guanylate binding proteins (GBPs). These proteins surround and disrupt the vacuole membrane, thereby killing the parasite growing inside (Martens et al., 2005; Ling et al., 2006; Yamamoto et al., 2012).
It is well established that the level of damage caused by different strains of T. gondii depends on their capacity to deactivate IRGs (Hunter and Sibley, 2012). Humans, however, do not have this IRG system, and much less is known about how our bodies kill off T. gondii (Bekpen et al., 2005; Saeij and Frickel, 2017). Now, in eLife, David Sibley and colleagues from Washington University and the University of Texas Southwestern Medical Center – including Nicholas Rinkenberger as first author – report how an IFNγ-stimulated gene called RARRES3 restricts T. gondii infections in human cells (Rinkenberger et al., 2021).
First, the team used a forward genetic approach that involved individually overexpressing hundreds of IFNγ-stimulated genes to see which ones interfered with the growth and replication of T. gondii. These experiments, which were carried out on human cells cultured in the laboratory, led to the discovery of RARRES3, a gene that codes for an understudied phospholipase enzyme that plays a role in lipid metabolism (Mardian et al., 2015).
Because the parasitic vacuole cannot fuse with other compartments, the infected cell cannot dispose of T. gondii by transporting it to the cell surface or degrading it in its lysosome (Mordue et al., 1999). Therefore, most IFNγ-stimulated genes eliminate the parasite by either disrupting the membrane surrounding the vacuole or ‘blowing up’ the infected cell (Saeij and Frickel, 2017). However, Rinkenberger et al. found that RARRES3 does not trigger either of these defense mechanisms. Instead, it reduces the size of the vacuole, causing T. gondii to egress before it has fully matured (Figure 1). This mechanism was shown to be specific to RARRES3, as this effect was not observed when the activity of the enzyme encoded by the gene was inhibited. In addition, restriction of the parasite’s vacuole was found to work independently from all other pathways known to induce cell death.
So, how does the parasite receive the eviction notice served by the RARRES3 gene, and how does the phospholipase enzyme encoded by this gene shrink the vacuole? T. gondii feeds on a variety of biomolecules and scavenges lipids from lipid droplets in the cytosol of its host cell (Nolan et al., 2017). Perhaps the enzyme starves the parasite by simply metabolizing these lipids before the parasite can get to them. Or maybe it somehow stops the parasite from using these lipids to expand the membrane around the vacuole. Interestingly, RARRES3 was found to only restrict strains of T. gondii that do not cause severe disease in mice and possibly humans. This suggests that there are likely to be other unknown mechanisms that explain why some strains of T. gondii cause more dangerous effects than others.
At first glance, it may seem that removing T. gondii from the cell (without killing it) will actually help the parasite to spread; however, there are some advantages to this strategy. First, it exposes the parasite to the extracellular environment, where it will encounter other components of the immune system (Souza et al., 2021). Second, it is possible that restricting the parasite’s food intake means it cannot build all the machinery it needs to invade new cells before being prematurely evicted. Further exploration of these possibilities may provide new insights into the ways that T. gondii and other disease-causing parasites use vacuoles to protect themselves.
References
-
Modulation of innate immunity by Toxoplasma gondii virulence effectorsNature Reviews. Microbiology 10:766–778.https://doi.org/10.1038/nrmicro2858
-
Vacuolar and plasma membrane stripping and autophagic elimination of Toxoplasma gondii in primed effector macrophagesThe Journal of Experimental Medicine 203:2063–2071.https://doi.org/10.1084/jem.20061318
-
The HRASLS (PLA/AT) subfamily of enzymesJournal of Biomedical Science 22:99.https://doi.org/10.1186/s12929-015-0210-7
-
Interferon-gamma suppresses the growth of Toxoplasma gondii in human fibroblasts through starvation for tryptophanMolecular and Biochemical Parasitology 20:215–224.https://doi.org/10.1016/0166-6851(86)90101-5
-
Exposing Toxoplasma gondii hiding inside the vacuole: a role for GBPs, autophagy and host cell deathCurrent Opinion in Microbiology 40:72–80.https://doi.org/10.1016/j.mib.2017.10.021
-
Interferon-stimulated genes: what do they all do?Annual Review of Virology 6:567–584.https://doi.org/10.1146/annurev-virology-092818-015756
Article and author information
Author details
Publication history
Copyright
© 2022, Sánchez-Arcila and Jensen
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,160
- views
-
- 107
- downloads
-
- 2
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Microbiology and Infectious Disease
Infection with the protozoan parasite Trypanosoma cruzi is generally well-controlled by host immune responses, but appears to be rarely eliminated. The resulting persistent, low-level infection results in cumulative tissue damage with the greatest impact generally in the heart in the form of chagasic cardiomyopathy. The relative success in immune control of T. cruzi infection usually averts acute phase death but has the negative consequence that the low-level presence of T. cruzi in hosts is challenging to detect unequivocally. Thus, it is difficult to identify those who are actively infected and, as well, problematic to gauge the impact of treatment, particularly in the evaluation of the relative efficacy of new drugs. In this study, we employ DNA fragmentation and high numbers of replicate PCR reaction (‘deep-sampling’) and to extend the quantitative range of detecting T. cruzi in blood by at least three orders of magnitude relative to current protocols. When combined with sampling blood at multiple time points, deep sampling of fragmented DNA allowed for detection of T. cruzi in all infected hosts in multiple host species, including humans, macaques, and dogs. In addition, we provide evidence for a number of characteristics not previously rigorously quantified in the population of hosts with naturally acquired T. cruzi infection, including, a >6 log variation between chronically infected individuals in the stable parasite levels, a continuing decline in parasite load during the second and third years of infection in some hosts, and the potential for parasite load to change dramatically when health conditions change. Although requiring strict adherence to contamination–prevention protocols and significant resources, deep-sampling PCR provides an important new tool for assessing therapies and for addressing long-standing questions in T. cruzi infection and Chagas disease.
-
- Microbiology and Infectious Disease
- Neuroscience
Glial cells of the enteric nervous system (ENS) interact closely with the intestinal epithelium and secrete signals that influence epithelial cell proliferation and barrier formation in vitro. Whether these interactions are important in vivo, however, is unclear because previous studies reached conflicting conclusions (Prochera and Rao, 2023). To better define the roles of enteric glia in steady state regulation of the intestinal epithelium, we characterized the glia in closest proximity to epithelial cells and found that the majority express the gene Proteolipid protein 1 (PLP1) in both mice and humans. To test their functions using an unbiased approach, we genetically depleted PLP1+ cells in mice and transcriptionally profiled the small and large intestines. Surprisingly, glial loss had minimal effects on transcriptional programs and the few identified changes varied along the gastrointestinal tract. In the ileum, where enteric glia had been considered most essential for epithelial integrity, glial depletion did not drastically alter epithelial gene expression but caused a modest enrichment in signatures of Paneth cells, a secretory cell type important for innate immunity. In the absence of PLP1+ glia, Paneth cell number was intact, but a subset appeared abnormal with irregular and heterogenous cytoplasmic granules, suggesting a secretory deficit. Consistent with this possibility, ileal explants from glial-depleted mice secreted less functional lysozyme than controls with corresponding effects on fecal microbial composition. Collectively, these data suggest that enteric glia do not exert broad effects on the intestinal epithelium but have an essential role in regulating Paneth cell function and gut microbial ecology.