Parasites: Eviction notice served on Toxoplasma
Cells have a variety of defense mechanisms for eliminating parasites, bacteria and other pathogens. To evade eviction, some of these pathogens sequester themselves inside structures called vacuoles once they are inside the cell. This allows the pathogens to grow ‘rent-free’, scavenging food from the cytosol without triggering the many ‘trip wires’ that lie immediately beyond the vacuole.
Many parasites rely on this strategy to survive, including Toxoplasma gondii, the microorganism that causes toxoplasmosis. When T. gondii is ingested by a human or other warm-blooded animal, the parasite invades cells lining the small intestine, using the plasma membrane of the cells to form the membrane of the vacuole (Figure 1; Suss-Toby et al., 1996). Once inside, the parasite starts to divide and mature into a new form that then gets released via a process called egress; the freshly egressed parasite then seeks out new cells to invade and quickly spreads throughout the body. T. gondii is considered one of the world’s most successful parasites because, once fully developed, it can infect virtually any cell with a nucleus. So, how does the host’s immune system remove this unauthorized occupant?
Most of the immune responses against T. gondii are regulated by a protein messenger called interferon gamma (IFNγ), which causes infected cells to transcribe hundreds of genes coding for proteins that stop the parasite from replicating (Pfefferkorn et al., 1986; Suzuki et al., 1988; Schoggins, 2019). In mice, IFNγ activates two sets of genes: one set codes for immunity-related GTPases (IRGs), and the other codes for guanylate binding proteins (GBPs). These proteins surround and disrupt the vacuole membrane, thereby killing the parasite growing inside (Martens et al., 2005; Ling et al., 2006; Yamamoto et al., 2012).
It is well established that the level of damage caused by different strains of T. gondii depends on their capacity to deactivate IRGs (Hunter and Sibley, 2012). Humans, however, do not have this IRG system, and much less is known about how our bodies kill off T. gondii (Bekpen et al., 2005; Saeij and Frickel, 2017). Now, in eLife, David Sibley and colleagues from Washington University and the University of Texas Southwestern Medical Center – including Nicholas Rinkenberger as first author – report how an IFNγ-stimulated gene called RARRES3 restricts T. gondii infections in human cells (Rinkenberger et al., 2021).
First, the team used a forward genetic approach that involved individually overexpressing hundreds of IFNγ-stimulated genes to see which ones interfered with the growth and replication of T. gondii. These experiments, which were carried out on human cells cultured in the laboratory, led to the discovery of RARRES3, a gene that codes for an understudied phospholipase enzyme that plays a role in lipid metabolism (Mardian et al., 2015).
Because the parasitic vacuole cannot fuse with other compartments, the infected cell cannot dispose of T. gondii by transporting it to the cell surface or degrading it in its lysosome (Mordue et al., 1999). Therefore, most IFNγ-stimulated genes eliminate the parasite by either disrupting the membrane surrounding the vacuole or ‘blowing up’ the infected cell (Saeij and Frickel, 2017). However, Rinkenberger et al. found that RARRES3 does not trigger either of these defense mechanisms. Instead, it reduces the size of the vacuole, causing T. gondii to egress before it has fully matured (Figure 1). This mechanism was shown to be specific to RARRES3, as this effect was not observed when the activity of the enzyme encoded by the gene was inhibited. In addition, restriction of the parasite’s vacuole was found to work independently from all other pathways known to induce cell death.
So, how does the parasite receive the eviction notice served by the RARRES3 gene, and how does the phospholipase enzyme encoded by this gene shrink the vacuole? T. gondii feeds on a variety of biomolecules and scavenges lipids from lipid droplets in the cytosol of its host cell (Nolan et al., 2017). Perhaps the enzyme starves the parasite by simply metabolizing these lipids before the parasite can get to them. Or maybe it somehow stops the parasite from using these lipids to expand the membrane around the vacuole. Interestingly, RARRES3 was found to only restrict strains of T. gondii that do not cause severe disease in mice and possibly humans. This suggests that there are likely to be other unknown mechanisms that explain why some strains of T. gondii cause more dangerous effects than others.
At first glance, it may seem that removing T. gondii from the cell (without killing it) will actually help the parasite to spread; however, there are some advantages to this strategy. First, it exposes the parasite to the extracellular environment, where it will encounter other components of the immune system (Souza et al., 2021). Second, it is possible that restricting the parasite’s food intake means it cannot build all the machinery it needs to invade new cells before being prematurely evicted. Further exploration of these possibilities may provide new insights into the ways that T. gondii and other disease-causing parasites use vacuoles to protect themselves.
References
-
Modulation of innate immunity by Toxoplasma gondii virulence effectorsNature Reviews. Microbiology 10:766–778.https://doi.org/10.1038/nrmicro2858
-
Vacuolar and plasma membrane stripping and autophagic elimination of Toxoplasma gondii in primed effector macrophagesThe Journal of Experimental Medicine 203:2063–2071.https://doi.org/10.1084/jem.20061318
-
The HRASLS (PLA/AT) subfamily of enzymesJournal of Biomedical Science 22:99.https://doi.org/10.1186/s12929-015-0210-7
-
Interferon-gamma suppresses the growth of Toxoplasma gondii in human fibroblasts through starvation for tryptophanMolecular and Biochemical Parasitology 20:215–224.https://doi.org/10.1016/0166-6851(86)90101-5
-
Exposing Toxoplasma gondii hiding inside the vacuole: a role for GBPs, autophagy and host cell deathCurrent Opinion in Microbiology 40:72–80.https://doi.org/10.1016/j.mib.2017.10.021
-
Interferon-stimulated genes: what do they all do?Annual Review of Virology 6:567–584.https://doi.org/10.1146/annurev-virology-092818-015756
Article and author information
Author details
Publication history
Copyright
© 2022, Sánchez-Arcila and Jensen
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,155
- views
-
- 107
- downloads
-
- 2
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Ecology
- Microbiology and Infectious Disease
Interspecies interactions involving direct competition via bacteriocin production play a vital role in shaping ecological dynamics within microbial ecosystems. For instance, the ribosomally produced siderophore bacteriocins, known as class IIb microcins, affect the colonization of host-associated pathogenic Enterobacteriaceae species. Notably, to date, only five of these antimicrobials have been identified, all derived from specific Escherichia coli and Klebsiella pneumoniae strains. We hypothesized that class IIb microcin production extends beyond these specific compounds and organisms. With a customized informatics-driven approach, screening bacterial genomes in public databases with BLAST and manual curation, we have discovered 12 previously unknown class IIb microcins in seven additional Enterobacteriaceae species, encompassing phytopathogens and environmental isolates. We introduce three novel clades of microcins (MccW, MccX, and MccZ), while also identifying eight new variants of the five known class IIb microcins. To validate their antimicrobial potential, we heterologously expressed these microcins in E. coli and demonstrated efficacy against a variety of bacterial isolates, including plant pathogens from the genera Brenneria, Gibbsiella, and Rahnella. Two newly discovered microcins exhibit activity against Gram-negative ESKAPE pathogens, i.e., Acinetobacter baumannii or Pseudomonas aeruginosa, providing the first evidence that class IIb microcins can target bacteria outside of the Enterobacteriaceae family. This study underscores that class IIb microcin genes are more prevalent in the microbial world than previously recognized and that synthetic hybrid microcins can be a viable tool to target clinically relevant drug-resistant pathogens. Our findings hold significant promise for the development of innovative engineered live biotherapeutic products tailored to combat these resilient bacteria.
-
- Biochemistry and Chemical Biology
- Microbiology and Infectious Disease
Malaria parasites have evolved unusual metabolic adaptations that specialize them for growth within heme-rich human erythrocytes. During blood-stage infection, Plasmodium falciparum parasites internalize and digest abundant host hemoglobin within the digestive vacuole. This massive catabolic process generates copious free heme, most of which is biomineralized into inert hemozoin. Parasites also express a divergent heme oxygenase (HO)-like protein (PfHO) that lacks key active-site residues and has lost canonical HO activity. The cellular role of this unusual protein that underpins its retention by parasites has been unknown. To unravel PfHO function, we first determined a 2.8 Å-resolution X-ray structure that revealed a highly α-helical fold indicative of distant HO homology. Localization studies unveiled PfHO targeting to the apicoplast organelle, where it is imported and undergoes N-terminal processing but retains most of the electropositive transit peptide. We observed that conditional knockdown of PfHO was lethal to parasites, which died from defective apicoplast biogenesis and impaired isoprenoid-precursor synthesis. Complementation and molecular-interaction studies revealed an essential role for the electropositive N-terminus of PfHO, which selectively associates with the apicoplast genome and enzymes involved in nucleic acid metabolism and gene expression. PfHO knockdown resulted in a specific deficiency in levels of apicoplast-encoded RNA but not DNA. These studies reveal an essential function for PfHO in apicoplast maintenance and suggest that Plasmodium repurposed the conserved HO scaffold from its canonical heme-degrading function in the ancestral chloroplast to fulfill a critical adaptive role in organelle gene expression.