Anatomical and functional connectivity support the existence of a salience network node within the caudal ventrolateral prefrontal cortex

  1. Lucas R Trambaiolli
  2. Xiaolong Peng
  3. Julia F Lehman
  4. Gary Linn
  5. Brian E Russ
  6. Charles E Schroeder
  7. Hesheng Liu
  8. Suzanne N Haber  Is a corresponding author
  1. McLean Hospital, United States
  2. Medical University of South Carolina, United States
  3. University of Rochester, United States
  4. Nathan Kline Institute for Psychiatric Research, United States

Abstract

Three large-scale brain networks are considered essential to cognitive flexibility: the ventral and dorsal attention (VANet and DANet) and salience (SNet) networks. The ventrolateral prefrontal cortex (vlPFC) is a known component of the VANet and DANet, but there is an important gap in the current knowledge regarding its involvement in the SNet. In this study, we used a translational and multimodal approach to fulfill this gap and demonstrate the existence of a SNet node within the vlPFC. First, we used tract-tracing methods in non-human primates (NHP) to quantify the anatomical connectivity strength between the different vlPFC areas and the frontal and insular cortices. The strongest connections with the dorsal anterior cingulate cortex (dACC) and anterior insula (AI) locations comprising the two main cortical SNet nodes were derived from the caudal area 47/12. This location also has strong axonal projections to subcortical structures of the salience network, including the dorsomedial thalamus, hypothalamus, sublenticular extended amygdala, and periaqueductal gray. Second, we used a seed-based functional connectivity analysis in NHP resting-state functional MRI (rsfMRI) data to validate the caudal area 47/12 as an SNet node. Third, we used the same approach in human rsfMRI data to identify a homologous structure in caudal area 47/12, also showing strong connections with the SNet cortical nodes, thus confirming the caudal area 47/12 as the SNet node in the vlPFC. Taken together, the vlPFC contains nodes for all three cognitive networks, the VANet, DANet, and SNet. Thus, the vlPFC is in a position to switch between these three cognitive networks, pointing to a key role as an attentional hub. Its tight additional connections to the orbitofrontal, dorsolateral, and ventral premotor cortices, places the vlPFC at the center for switching behaviors based on environmental stimuli, computing value and cognitive control.

Data availability

All anatomical data analysed during this study are included in the manuscript and supporting files.Functional connectivity analyses utilized publicly available datasets:PRIME-DE:https://fcon_1000.projects.nitrc.org/indi/indiPRIME.htmlGSP:https://www.nature.com/articles/sdata201531

The following previously published data sets were used

Article and author information

Author details

  1. Lucas R Trambaiolli

    McLean Hospital, Belmont, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiaolong Peng

    Medical University of South Carolina, Charleston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4488-9628
  3. Julia F Lehman

    Department of Pharmacology and Physiology, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Gary Linn

    Nathan Kline Institute for Psychiatric Research, Orangeburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Brian E Russ

    Nathan Kline Institute for Psychiatric Research, Orangeburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Charles E Schroeder

    Nathan Kline Institute for Psychiatric Research, Orangeburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Hesheng Liu

    Medical University of South Carolina, Charleston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Suzanne N Haber

    Department of Pharmacology and Physiology, University of Rochester, Rochester, United States
    For correspondence
    Suzanne_Haber@urmc.rochester.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5237-1941

Funding

National Institutes of Health (MH106435)

  • Suzanne N Haber

National Institutes of Health (MH045573)

  • Suzanne N Haber

National Natural Science Foundation of China (81790652)

  • Hesheng Liu

National Institutes of Health (MH111439)

  • Charles E Schroeder

National Institutes of Health (MH109429)

  • Charles E Schroeder

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All tracer experiments and animal care were approved by the University Committee on Animal Resources at University of Rochester (protocol number UCAR-2008-122R).The NKI Institutional Animal Care and Use Committee (IACUC) protocol approved all imaging methods and procedures in NHP (protocol numbers AP2016-568 and AP2019-642). All experiments were conducted following the National Guide for the Care and Use of Laboratory Animals.

Reviewing Editor

  1. Birte U Forstmann, University of Amsterdam, Netherlands

Publication history

  1. Preprint posted: October 3, 2021 (view preprint)
  2. Received: December 13, 2021
  3. Accepted: May 4, 2022
  4. Accepted Manuscript published: May 5, 2022 (version 1)
  5. Version of Record published: May 13, 2022 (version 2)

Copyright

© 2022, Trambaiolli et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,377
    Page views
  • 270
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lucas R Trambaiolli
  2. Xiaolong Peng
  3. Julia F Lehman
  4. Gary Linn
  5. Brian E Russ
  6. Charles E Schroeder
  7. Hesheng Liu
  8. Suzanne N Haber
(2022)
Anatomical and functional connectivity support the existence of a salience network node within the caudal ventrolateral prefrontal cortex
eLife 11:e76334.
https://doi.org/10.7554/eLife.76334

Further reading

    1. Neuroscience
    Xiaosha Wang, Bijun Wang, Yanchao Bi
    Research Article Updated

    One signature of the human brain is its ability to derive knowledge from language inputs, in addition to nonlinguistic sensory channels such as vision and touch. How does human language experience modulate the mechanism by which semantic knowledge is stored in the human brain? We investigated this question using a unique human model with varying amounts and qualities of early language exposure: early deaf adults who were born to hearing parents and had reduced early exposure and delayed acquisition of any natural human language (speech or sign), with early deaf adults who acquired sign language from birth as the control group that matches on nonlinguistic sensory experiences. Neural responses in a semantic judgment task with 90 written words that were familiar to both groups were measured using fMRI. The deaf group with reduced early language exposure, compared with the deaf control group, showed reduced semantic sensitivity, in both multivariate pattern (semantic structure encoding) and univariate (abstractness effect) analyses, in the left dorsal anterior temporal lobe (dATL). These results provide positive, causal evidence that language experience drives the neural semantic representation in the dATL, highlighting the roles of language in forming human neural semantic structures beyond nonverbal sensory experiences.

    1. Neuroscience
    Ayako Yamaguchi, Manon Peltier
    Research Article Updated

    Across phyla, males often produce species-specific vocalizations to attract females. Although understanding the neural mechanisms underlying behavior has been challenging in vertebrates, we previously identified two anatomically distinct central pattern generators (CPGs) that drive the fast and slow clicks of male Xenopus laevis, using an ex vivo preparation that produces fictive vocalizations. Here, we extended this approach to four additional species, X. amieti, X. cliivi, X. petersii, and X. tropicalis, by developing ex vivo brain preparation from which fictive vocalizations are elicited in response to a chemical or electrical stimulus. We found that even though the courtship calls are species-specific, the CPGs used to generate clicks are conserved across species. The fast CPGs, which critically rely on reciprocal connections between the parabrachial nucleus and the nucleus ambiguus, are conserved among fast-click species, and slow CPGs are shared among slow-click species. In addition, our results suggest that testosterone plays a role in organizing fast CPGs in fast-click species, but not in slow-click species. Moreover, fast CPGs are not inherited by all species but monopolized by fast-click species. The results suggest that species-specific calls of the genus Xenopus have evolved by utilizing conserved slow and/or fast CPGs inherited by each species.