Humanization of wildlife gut microbiota in urban environments

  1. Brian A Dillard  Is a corresponding author
  2. Albert K Chung
  3. Alex R Gunderson
  4. Shane C Campbell-Staton
  5. Andrew H Moeller  Is a corresponding author
  1. Cornell University, United States
  2. Princeton University, United States
  3. Tulane University, United States

Abstract

Urbanization is rapidly altering Earth’s environments, demanding investigation of the impacts on resident wildlife. Here, we show that urban populations of coyotes (Canis latrans), crested anole lizards (Anolis cristatellus), and white-crowned sparrows (Zonotrichia leucophrys) acquire gut microbiota constituents found in humans, including gut bacterial lineages associated with urbanization in humans. Comparisons of urban and rural wildlife and human populations revealed significant convergence of gut microbiota among urban populations relative to rural populations. All bacterial lineages overrepresented in urban wildlife relative to rural wildlife and differentially abundant between urban and rural humans were also overrepresented in urban humans relative to rural humans. Remarkably, the bacterial lineage most overrepresented in urban anoles was a Bacteroides sequence variant that was also the most significantly overrepresented in urban human populations. These results indicate parallel effects of urbanization on human and wildlife gut microbiota and suggest spillover of bacteria from humans into wildlife in cities.

Data availability

Sequencing data have been deposited in Data Dryad at https://dx.doi.org/10.5061/dryad.dfn2z353d

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Brian A Dillard

    Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, United States
    For correspondence
    bd429@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1845-2980
  2. Albert K Chung

    Princeton University, Princeton, NJ, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alex R Gunderson

    Tulane University, Tulane, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Shane C Campbell-Staton

    Princeton University, Princeton, NJ, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Andrew H Moeller

    Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, United States
    For correspondence
    ahm226@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8377-4647

Funding

National Institute of General Medical Sciences (R35 GM138284)

  • Andrew H Moeller

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Peter J Turnbaugh, University of California, San Francisco, United States

Version history

  1. Received: December 14, 2021
  2. Preprint posted: January 6, 2022 (view preprint)
  3. Accepted: May 16, 2022
  4. Accepted Manuscript published: May 31, 2022 (version 1)
  5. Version of Record published: June 16, 2022 (version 2)

Copyright

© 2022, Dillard et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,059
    views
  • 759
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brian A Dillard
  2. Albert K Chung
  3. Alex R Gunderson
  4. Shane C Campbell-Staton
  5. Andrew H Moeller
(2022)
Humanization of wildlife gut microbiota in urban environments
eLife 11:e76381.
https://doi.org/10.7554/eLife.76381

Share this article

https://doi.org/10.7554/eLife.76381

Further reading

    1. Computational and Systems Biology
    2. Ecology
    Kazushi Tsutsui, Ryoya Tanaka ... Keisuke Fujii
    Research Article

    Collaborative hunting, in which predators play different and complementary roles to capture prey, has been traditionally believed to be an advanced hunting strategy requiring large brains that involve high-level cognition. However, recent findings that collaborative hunting has also been documented in smaller-brained vertebrates have placed this previous belief under strain. Here, using computational multi-agent simulations based on deep reinforcement learning, we demonstrate that decisions underlying collaborative hunts do not necessarily rely on sophisticated cognitive processes. We found that apparently elaborate coordination can be achieved through a relatively simple decision process of mapping between states and actions related to distance-dependent internal representations formed by prior experience. Furthermore, we confirmed that this decision rule of predators is robust against unknown prey controlled by humans. Our computational ecological results emphasize that collaborative hunting can emerge in various intra- and inter-specific interactions in nature, and provide insights into the evolution of sociality.

    1. Ecology
    2. Evolutionary Biology
    Théo Constant, F Stephen Dobson ... Sylvain Giroud
    Research Article

    Seasonal animal dormancy is widely interpreted as a physiological response for surviving energetic challenges during the harshest times of the year (the physiological constraint hypothesis). However, there are other mutually non-exclusive hypotheses to explain the timing of animal dormancy, that is, entry into and emergence from hibernation (i.e. dormancy phenology). Survival advantages of dormancy that have been proposed are reduced risks of predation and competition (the ‘life-history’ hypothesis), but comparative tests across animal species are few. Using the phylogenetic comparative method applied to more than 20 hibernating mammalian species, we found support for both hypotheses as explanations for the phenology of dormancy. In accordance with the life-history hypotheses, sex differences in hibernation emergence and immergence were favored by the sex difference in reproductive effort. In addition, physiological constraint may influence the trade-off between survival and reproduction such that low temperatures and precipitation, as well as smaller body mass, influence sex differences in phenology. We also compiled initial evidence that ectotherm dormancy may be (1) less temperature dependent than previously thought and (2) associated with trade-offs consistent with the life-history hypothesis. Thus, dormancy during non-life-threatening periods that are unfavorable for reproduction may be more widespread than previously thought.